ответ: Пусть ABC — произвольный треугольник. Проведём через вершину B прямую, параллельную прямой AC. Отметим на ней точку D так, чтобы точки A и D лежали по разные стороны от прямой BC. Углы DBC и ACB равны как внутренние накрест лежащие, образованные секущей BC с параллельными прямыми AC и BD. Поэтому сумма углов треугольника при вершинах B и С равна углу ABD. Сумма всех трёх углов треугольника равна сумме углов ABD и BAC. Так как эти углы внутренние односторонние для параллельных AC и BD при секущей AB, то их сумма равна 180°. Что и требовалось доказать.
Объяснение: Из теоремы следует, что у любого треугольника не меньше двух острых углов. Действительно, применяя доказательство от противного, допустим, что у треугольника только один острый угол или вообще нет острых углов. Тогда у этого треугольника есть, по крайней мере, два угла, каждый из которых не меньше 90°. Сумма этих углов не меньше 180°. А это невозможно, так как сумма всех углов треугольника равна 180°.
ответ: Пусть ABC — произвольный треугольник. Проведём через вершину B прямую, параллельную прямой AC. Отметим на ней точку D так, чтобы точки A и D лежали по разные стороны от прямой BC. Углы DBC и ACB равны как внутренние накрест лежащие, образованные секущей BC с параллельными прямыми AC и BD. Поэтому сумма углов треугольника при вершинах B и С равна углу ABD. Сумма всех трёх углов треугольника равна сумме углов ABD и BAC. Так как эти углы внутренние односторонние для параллельных AC и BD при секущей AB, то их сумма равна 180°. Что и требовалось доказать.
Объяснение: Из теоремы следует, что у любого треугольника не меньше двух острых углов. Действительно, применяя доказательство от противного, допустим, что у треугольника только один острый угол или вообще нет острых углов. Тогда у этого треугольника есть, по крайней мере, два угла, каждый из которых не меньше 90°. Сумма этих углов не меньше 180°. А это невозможно, так как сумма всех углов треугольника равна 180°.
Так как заданий много, пишу кратко. Извиняйте, Вам жалко пунктов, а мне времени.
1) Пусть меньшая сторона - х см, тогда вторая - (х+13) см.
х+х+13=47
2х=34
х=17
ответ. 17 см.
2) Данный прямоугольник является квадратом - все стороны равны.
d=a√2
a = d/√2 = 16√2 / √2 = 16.
Р=4а=4·16=64
ответ. 64.
3) 7х+5х=180
12х=180
х=15
7·15=105°, 5·15=75°
105°-75°=30°
ответ. 30°.
4) углы, которые соединяет диагональ, равны по 23°+38°=61°
два других угла равны по 180°-61°=119°
ответ. 119°
5) 154° - это сумма противоположных углов. Так как они равны, то каждый из них равен 154°:2=77°.
Два других равны по 180°-77°=103°
ответ. 103°
6) Третий угол равен 180°-123°=57°, четвертый угол - 180°-71°109°.
Меньший из всех - 57°.
ответ. 57°.