1) У равнобедренного треугольника есть ось симметрии. 3) Площадь трапеции равна произведению средней линии на высоту. 2) Любой квадрат можно вписать в окружность. 3) Сумма квадратов диагоналей прямоугольника равна сумме квадратов всех его сторон.
1) Через точку, не лежащую на данной прямой, можно провести прямую, перпендикулярную этой прямой.
2) Если при пересечении двух прямых третьей прямой сумма внутренних односторонних углов равна 180°,то эти прямые параллельны. 1) Вокруг любого треугольника можно описать окружность. 3) Если в ромбе один из углов равен 90°, то такой ромб -.квадрат. 1) Если при пересечении двух прямых третьей прямой накрест лежащие углы равны, то прямые параллельны.
2) Существует параллелограмм, который не является прямоугольником. 3) Сумма углов тупоугольного треугольника равна 180°.
симметрии.
3) Площадь трапеции равна произведению средней
линии на высоту.
2) Любой квадрат можно вписать в окружность.
3) Сумма квадратов диагоналей прямоугольника
равна сумме квадратов всех его сторон.
1) Через точку, не лежащую на данной прямой,
можно провести прямую, перпендикулярную этой прямой.
2) Если при пересечении двух прямых третьей
прямой сумма внутренних односторонних углов равна 180°,то
эти прямые параллельны.
1) Вокруг любого треугольника можно описать
окружность.
3) Если в ромбе один из углов равен 90°, то
такой ромб -.квадрат.
1) Если при пересечении двух прямых третьей
прямой накрест лежащие углы равны, то прямые параллельны.
2) Существует параллелограмм, который не является
прямоугольником.
3) Сумма углов тупоугольного треугольника
равна 180°.
3. Проведем высоту трапеции СН. АС биссектриса прямого угла, значит угол САН=45° и АН=СН.
По Пифагору АС²=АН²+СН². 36=2АН². АН=СН=3√2.
В прямоугольном треугольнике НСD: угол НDС равен 60°, значит <HCD=30°. Против угла 30° лежит катет, равный половине гипотенузы.
Тогда по Пифагору: СD²=HD²+СН² или 4HD²-HD²=СН² или 3HD²=18.
Тогда HD=√6. Основание трапеции АD=АН+HD=3√2+√6.
Итак, АD=3√2+√6, ВС=АН=3√2, СН=3√2.
Площадь трапеции S=(ВС+АD)*СН/2 или
S=(3√2+3√2+√6)*3√2/2=(36+3√12)/2=(36+6√3)/2=18+3√3.
ответ: S=18+3√3.
Можно и так:
Площадь трапеции равна сумме площадей квадрата АВСН и треугольника НСD, то есть АН*СН+(1/2)СН*НD или
S=18+(1/2)*3√2*√6=18+3√3.
https://ru-static.z-dn.net/files/da2/e36a12b04c0e021fcafca118d718dbb1.jpg - Фото.
4. Фото - https://ru-static.z-dn.net/files/d58/5555571f58e1c84bb6d68558b3a1d0a8.jpg