АВСД - ромб. Через вершину А проведена прямая а параллельна диагонали ВД. Для доказательства используем одно из свойств ромба: его диагонали пересекаются под прямым углом. (Здесь даже не важно под каким углом они пересекаются). Поскольку прямая а и ВД параллельны, а СД пересекает одну из параллельных прямых, то она обязательно пересечет и вторую прямую, т.е. прямую а. Есть теорема: Пусть три прямые лежат в некоторой плоскости. Если прямая пересекает одну из параллельных прямых, то она пересекает и вторую прямую. Что и требовалось для доказательства.
Объяснение:
Дано точки A(2;-3) B(4;2) C (-3;3) D (-5;1) Знайти координати точок , симитричним даним відносно
а) початку координат
для того чтобы найти координаты точки симметричной данной точке относительно начала координат, надо координаты взять с противоположным знаком
A(2;-3) A'(-2;3)
B(4;2) B'(-4;-2)
C (-3;3) C'(3;-3)
D (-5;1) D'(5;-1)
б) Если А(х₁;y₁) B(x₂;y₂) и точка С(х₃;y₃) симметрична точке A относительно B то В - будет середина отрезка AC
х₂=(х₁+х₃)/2 ; y₂=(y₁+y₃)/2
x₃=2x₂-x₁; y₃=2y₂-y₁
A(2;-3) M(1;1) A"(2*1-2;2*1+3) A"(0;5)
B(4;2) M(1;1) A"(2*1-4;2*1-2) A"(-2;0)
C(-3;3) M(1;1) A"(2*1+3;2*1-3) A"(5;-1)
D(-5;1) M(1;1) A"(2*1+5;2*1-1) A"(7;1)
Для доказательства используем одно из свойств ромба: его диагонали пересекаются под прямым углом. (Здесь даже не важно под каким углом они пересекаются).
Поскольку прямая а и ВД параллельны, а СД пересекает одну из параллельных прямых, то она обязательно пересечет и вторую прямую, т.е. прямую а.
Есть теорема:
Пусть три прямые лежат в некоторой плоскости. Если прямая пересекает одну из параллельных прямых, то она пересекает и вторую прямую.
Что и требовалось для доказательства.