Втреугольнике сумма углов равна 180° запишем эту истину для треугольника авс ∠а+∠в+∠с=180° то же самое - для треугольника амс ∠1/2 а+ ∠1/2 с+ ∠амс=180° но по условию ∠амс=3∠в, поэтому ∠1/2 а+ ∠1/2 с+ 3∠в=180° из треугольника авс ∠а +∠с=180 -∠в найдем сумму половин углов а и с (∠а +∠с): 2=(180°-∠в): 2 подставим значение суммы половин углов а и с в уравнение для треугольника амс (180° -∠в): 2 + 3∠в=180° умножим обе стороны уравнения на 2, чтобы избавиться от дроби: 180° -∠в +6∠в=360° 5∠в=180° ∠в=180°: 5=36°
Если провести через точку A прямую параллельно BC, то она пересечет BD в точке K таким образом, что AK = AB. Это потому, что ∠AKB = ∠DBC; это - внутренние накрест лежащие углы; а ∠DBC = ∠ABD; так как BD - биссектриса получилось, что треугольник AKB - равнобедренный. Теперь понятно, что для того, чтобы прямая AD пересекла BС в точке C за точкой D, то есть чтобы существовал треугольник ABC, нужно, чтобы точка D лежала ближе к B, чем K. Отсюда ∠ADB > ∠AKB = ∠ABD; и AB > AD; так как напротив большего угла в треугольнике лежит большая сторона.
∠AKB = ∠DBC; это - внутренние накрест лежащие углы; а
∠DBC = ∠ABD; так как BD - биссектриса
получилось, что треугольник AKB - равнобедренный.
Теперь понятно, что для того, чтобы прямая AD пересекла BС в точке C за точкой D, то есть чтобы существовал треугольник ABC, нужно, чтобы точка D лежала ближе к B, чем K.
Отсюда ∠ADB > ∠AKB = ∠ABD; и AB > AD; так как напротив большего угла в треугольнике лежит большая сторона.