Из правильного треугольника АВС: из теоремы Пифагора: высота ВК равна 3 корня из 2. Угол ОАК - это угол между плоскостью АОС и основанием. Поскольку угол ОАК = 30 градусов, то катет ОК равен гипотенузы ОА как катет, который лежит против угла 30 градусов. ОК = ОА/2. Пускай ОК = х, тогда ОА = 2х. Из прямоугольного треугольника ОАК: за теоремой Пифагора: OA^2 = OK^2 + AK^2, 4x^2 = 9 - x^2, 3x^2 = 9, x^2 = 3, x = корень из 3. OK = корень из 3. Объем призмы равен площади основания умножить на высоту: S = So*H = S(ABC)*OK = BK*AC/2*OK = 9 корней из 6.
НЮХАЙ БЕБРУ м1.Відомо, що ∆АВС = ∆PQR. Виберіть правильне твердження.
А) ∠C=∠P, Б) ∠В=∠R, В) AC=QR, Г) BC=QR
2. У трикутнику АВС відрізок ВД є медіаною. Яка з наведених рівностей випливає з цієї умови?
А) АВ=ВС Б) ∠ВАД = 900 В) АД=ДС Г) ∠АДВ = 900.
3. Знайдіть периметр рівнобедреного трикутника, якщо його бічна сторона дорівнює 10см, а основа – 5 см.
4. АД – медіана рівнобедреного трикутника АВС з основою ВС. Чому дорівнює кут ВАС, якщо ∠САД = 400?
5. Знайдіть сторони рівнобедреного трикутника, якщо його периметр дорівнює 84см, а бічна сторона на 18см більша за його основу.
6. Відрізки АВ і СД перетинаються у точці О, яка є серединою кожного з них. ∠АВС = 600, ∠СДА = 300. Знайдіть градусну міру кута ВСД.
7. Доведіть рівність трикутників АВД і СВД, якщо ∠АВД=∠СВД і АВ=ВС.
1.Відомо, що ∆АВС = ∆PQR. Виберіть правильне твердження.
А) ∠C=∠P, Б) ∠В=∠R, В) AC=QR, Г) BC=QR
2. У трикутнику АВС відрізок ВД є медіаною. Яка з наведених рівностей випливає з цієї умови?
А) АВ=ВС Б) ∠ВАД = 900 В) АД=ДС Г) ∠АДВ = 900.
3. Знайдіть периметр рівнобедреного трикутника, якщо його бічна сторона дорівнює 10см, а основа – 5 см.
4. АД – медіана рівнобедреного трикутника АВС з основою ВС. Чому дорівнює кут ВАС, якщо ∠САД = 400?
5. Знайдіть сторони рівнобедреного трикутника, якщо його периметр дорівнює 84см, а бічна сторона на 18см більша за його основу.
6. Відрізки АВ і СД перетинаються у точці О, яка є серединою кожного