На стороне BC остроугольного треугольника ABC как на диаметре построена полуокружность, пересекающая высоту AD в точке M , AD = 16 , MD = 12 , H - точка пересечения высот треугольника ABC . Найдите AH.
РЕШЕНИЕ:
• АМ = АD - MD = 16 - 12 = 4 AK = AM + MD + DK = 4 + 12 + 12 = 28 • По свойству секущих: АЕ • АС = АМ • АК = 4 • 28 • тр. АНЕ подобен тр. ACD по двум углам ( угол А - общий, угол АЕН = угол АDC = 90° ) Составим отношения сходственных сторон: АЕ/AD = AH/AC = HE/CD, отсюда АЕ/АD = AH/AC => AE • AC = AD • AH
На стороне BC остроугольного треугольника ABC (AB ≠ AC) как на диаметре построена полуокружность, пересекающая высоту AD в точке M, AD = 32, MD = 8, H — точка пересечения высот треугольника ABC. Найдите AH.
Решение.
Проведём построения и введём обозначения как указано на рисунке. Угол — вписанный, опирающийся на диаметр, поэтому он равен 90°. Значит, точка пересечения прямых и — точка пересечения высот Продолжим высоту до пересечения с окружностью в точке Получаем, что По теореме о секущих получаем, что Треугольники и — прямоугольные, угол — общий, следовательно, эти треугольники подобны, откуда:
РЕШЕНИЕ:
• АМ = АD - MD = 16 - 12 = 4
AK = AM + MD + DK = 4 + 12 + 12 = 28
• По свойству секущих:
АЕ • АС = АМ • АК = 4 • 28
• тр. АНЕ подобен тр. ACD по двум углам
( угол А - общий, угол АЕН = угол АDC = 90° )
Составим отношения сходственных сторон:
АЕ/AD = AH/AC = HE/CD, отсюда
АЕ/АD = AH/AC =>
AE • AC = AD • AH
AH = AE • AC / AD = 4 • 28 / 16 = 7
ОТВЕТ: 7.
На стороне BC остроугольного треугольника ABC (AB ≠ AC) как на диаметре построена полуокружность, пересекающая высоту AD в точке M, AD = 32, MD = 8, H — точка пересечения высот треугольника ABC. Найдите AH.
Решение.
Проведём построения и введём обозначения как указано на рисунке. Угол — вписанный, опирающийся на диаметр, поэтому он равен 90°. Значит, точка пересечения прямых и — точка пересечения высот Продолжим высоту до пересечения с окружностью в точке Получаем, что По теореме о секущих получаем, что Треугольники и — прямоугольные, угол — общий, следовательно, эти треугольники подобны, откуда:
ответ: 30.