Обобщение и систематизация темы «Основные свойства простейших геометрических фигур. Смежные и пертикальные углы» Вариант 4 1. На луче с началом в точке А отмечены точки Ви C. Haliдите отрезок ВС, если AB=3,5 см, AC=5,7 см. Какая из точек лежит между двумя другими? 2. Один из углов, образовавшихся при пересечении двух прямых, на 50° больше другого. Найдите ти углы. 3. Луч с - биссектриса 4. Смотри рисунок. Дано: 2 <АОК - 152°, ОС ОК, луч ОМ - биссектриса <КОА. Найти:
Даны вершины треугольника А(-1;2) В(2;1) и С(-2;-2). Составить уравнения а). трех его сторон. это каноническое уравнение, -х - 1 = 3у - 6, х + 3у - 5 = 0 это уравнение общего вида, у = (-1/3)х + (5/3) это уравнение с коэффициентом.
б) высоты АН, опущенной из вершины А на сторону ВС. Уравнение ВС: y = (3/4)x - (1/2). АН: у = (-4/3)х + в. Подставим координаты точки А: 2 = (-4/3)*(-1) + в, в = 2 - (4/3) = 2/3. АН: у = (-4/3)х + (2/3).
в) медианы, проведенной из вершины С. Найдём координаты основания медианы - точки М как середину АВ. М((-1+2)/2=0,5; (2+1)/2=1,5). СМ: (х+2)/(0,5+2) = (у+2)/(1,5+2), СМ: (х+2)/2,5 = (у+2)/3,5.
Пусть АВ ∩ СD = О При пересечении двух прямых получаем пары равных углов : ∠AOD = ∠COB = x и ∠AOC = ∠DOB = y По условию задачи ∠AOD + ∠DOB +∠ BOC = 278° , а сумма всех четырёх углов равна 360° . Получим систему : x + y + x = 278° 2 x + y = 278° 2 x + y = 278° ⇒ ⇒ x + y + x + y =360° 2 x + 2 y = 360° x + y = 180° Из второго уравнения выразим у чеоез х : у = 180°-х и подставим это значение в 1 уравнение : 2 х + (180° - х ) = 278° ⇒ х + 180° = 278 ° ⇒ х= 278° - 180° ⇒ х = 98° Тогда у = 180° - х = 180° - 98° = 82° ответ : 98 ° ; 82° ; 98° ; 82°
Составить уравнения
а). трех его сторон.
это каноническое уравнение,
-х - 1 = 3у - 6,
х + 3у - 5 = 0 это уравнение общего вида,
у = (-1/3)х + (5/3) это уравнение с коэффициентом.
-3x + 6 = -4y + 4,
3x - 4y -2 = 0,
y = (3/4)x - (1/2).
-4x - 4 = -y + 2,
4x - y + 6 = 0,
y = 4x + 6.
б) высоты АН, опущенной из вершины А на сторону ВС.
Уравнение ВС: y = (3/4)x - (1/2).
АН: у = (-4/3)х + в.
Подставим координаты точки А:
2 = (-4/3)*(-1) + в,
в = 2 - (4/3) = 2/3.
АН: у = (-4/3)х + (2/3).
в) медианы, проведенной из вершины С.
Найдём координаты основания медианы - точки М как середину АВ.
М((-1+2)/2=0,5; (2+1)/2=1,5).
СМ: (х+2)/(0,5+2) = (у+2)/(1,5+2),
СМ: (х+2)/2,5 = (у+2)/3,5.
По условию задачи ∠AOD + ∠DOB +∠ BOC = 278° , а сумма всех четырёх углов равна 360° . Получим систему :
x + y + x = 278° 2 x + y = 278° 2 x + y = 278°
⇒ ⇒
x + y + x + y =360° 2 x + 2 y = 360° x + y = 180°
Из второго уравнения выразим у чеоез х : у = 180°-х и подставим это значение в 1 уравнение : 2 х + (180° - х ) = 278° ⇒
х + 180° = 278 ° ⇒ х= 278° - 180° ⇒ х = 98°
Тогда у = 180° - х = 180° - 98° = 82°
ответ : 98 ° ; 82° ; 98° ; 82°