Образец заданий и схема выставлення Задания суммативного оценивания за 3 четверть по предмету «Геометрии» 1. По данным рисунка найдите углы 1 и 2, если m ||n|| < 2 в пять раз больше 4.
Нужно делить на СООТВЕТСТВУЮЩУЮ сторону треугольника. Если дано, что треугольники АВС и ОРТ, подобны, то вначале надо определить какие стороны являются соответствующими (и то же самое с углами: соответствующие углы у подобных треугольников равны). Как правило в учебниках, при записи подобных треугольников соответствие определяется по положению буквы в записи треугольника. Хотя, в новых учебниках это явно не сказано. Например, если сказано, что треугольники АВС и ОРТ подобны, то подразумевается, что угол А равен углу О, угол В равен Р, и С равен Т. И тогда стороне АВ соответствует сторона ОР, стороне ВС соответствует РТ и стороне АС соответствует OТ. Т.е. при такой записи, будет AB/OP=BC/PT=AC/OT. И в вашей задаче, если AB=8, то чтобы определить коэффициент подобия, надо знать длину именно ОР. И если сказано, что она 4, то да, треугольник ABC подобен треугольнику ОРТ с коэффициентом подобия 2.
AC = AD; AB = AE; CE = 7 (сантиметров); AE = 3 (сантиметра).
Найти:AB; BD.
Доказать:△ ACE = △ ABD.
Доказательство:По данным условиям можно сделать вывод, что задачу возможно доказать по 1 признаку равенства треугольников.
1 треугольник = 2 треугольник
2 стороны = 2 стороны
угол между 2 сторонами = угол между 2 сторонами
AB = AE (по условию); AC = AD (по условию).
∠ A - общий, поэтому является равным в обоих треугольниках.
⇒ △ ACE = △ ABD (по 1 признаку равенства треугольников)
ч.т.д.
Решение:Из "Доказательство" ⇒ BD = CE = 7 (сантиметров); AB = AE = 3 (сантиметра). (т.к. треугольники равны)
ответ: 7 сантиметров; 3 сантиметра.