Для начала найдем неизвестные угол и стороны ∆ АКЕ. Сумма углов треугольника 180° => угол КАЕ=180°-(54°+60°=66°
По т.синусов АЕ=АК•sin54°/sin60°. KE=AK•sin66°/sin60°
sin60°=0.8660; sin54°= 0.8090; sin66°=0.9135
AE=20•0,8090/0,8660=18,683≈18,7 см; KE=20•0,9135/0,8660=21,097≈ 21,1 см
Стороны и углы треугольника ВСD имеют те же значения, что и соответствующие углы и стороны ∆ АКЕ, но в условии не указано, какие именно элементы двух треугольников равны. Если в ∆ ВСD сторона ВС=АК, и ∠D=∠Е, то ∠В=∠А=66°,∠С=∠К=54°, ВС=20 см, ВD=AE≈18,7= см, CD=KE≈21,1 см
Даны координаты вершины треугольника А(1,-2),В(2,4),С(0,1).
Определяем длины сторон по векторам.
АВ (c) BC (a) AС (b)
x y x y x y
1 6 -2 -3 -1 3
Длины сторон АВ = √(1+36) = √37 = 6,08276253
BC = √(4+9) = √13 = ,605551275
AC = √(1+9) = √10 = 3,16227766
Периметр Р = 12,85059147
Полупериметр р = 6,425295733
Площадь по Герону 4,5
Площадь можно найти по формуле, которая даёт результат прямо по координатам вершин треугольника.
S = (1/2)*|(x2-x1)*(y3-y1) - (x3-x1)*(y2-y1)|.
S = 0,5 *((* 3) - (-1* 6)) = 4,5.
1) угол АВС (можно обозначить просто угол В).
Углы по теореме косинусов
cos A = (b^2+c^2-a^2)/(2bc) 34/ 38,47076812 = 0,883787916
A = arccos 0,883787916 = 0,486899232 радиан 27,89727103 градуса
cos B = (a^2+c^2-b^2)/(2ac) 40 /43,863424 = 0,911921505
B = arccos 0,911921505 = 0,422853926 радиан 24,22774532 градуса
cos C = (a^2+b^2-c^2)/(2ab) -14/22,8035085 = -0,613940614
C = arccos -0,613940614 = 2,231839496 радиан 127,8749837 градуса
Сумма 180.
2)Площадь треугольника АВС дана выше.
Для начала найдем неизвестные угол и стороны ∆ АКЕ. Сумма углов треугольника 180° => угол КАЕ=180°-(54°+60°=66°
По т.синусов АЕ=АК•sin54°/sin60°. KE=AK•sin66°/sin60°
sin60°=0.8660; sin54°= 0.8090; sin66°=0.9135
AE=20•0,8090/0,8660=18,683≈18,7 см; KE=20•0,9135/0,8660=21,097≈ 21,1 см
Стороны и углы треугольника ВСD имеют те же значения, что и соответствующие углы и стороны ∆ АКЕ, но в условии не указано, какие именно элементы двух треугольников равны. Если в ∆ ВСD сторона ВС=АК, и ∠D=∠Е, то ∠В=∠А=66°,∠С=∠К=54°, ВС=20 см, ВD=AE≈18,7= см, CD=KE≈21,1 см