Если три стороны одного треугольника равны соответственно трем сторонам другого треугольника, то такие треугольники равны.
Доказательство.
Пусть треугольники ABC и A1B1C1 такие, что AB=A1B1, AC=A1C1, BC=B1C1. Требуется доказать, что треугольники равны. Допустим, что треугольники не равны. Тогда ∠ A ≠ ∠ A1, ∠ B ≠ ∠ B1, ∠ C ≠ ∠ C1 одновременно. Иначе треугольники были бы равны по первому признаку. Пусть треугольник A1B1C2 – треугольник, равный треугольнику ABC, у которого вершина С2 лежит в одной полуплоскости с вершиной С1 относительно прямой A1B1. Пусть D – середина отрезка С1С2. треугольники A1C1C2 и B1C1C2 равнобедренные с общим основанием С1С2. Поэтому их медианы A1D и B1D являются высотами. Значит, прямые A1D и B1D перпендикулярны прямой С1С2. Прямые A1D и B1D не совпадают, так как точки A1, B1, D не лежат на одной прямой. Но через точку D прямой С1С2 можно провести только одну перпендикулярную ей прямую. Мы пришли к противоречию. Теорема доказана. 53 Нравится
Геометрическое место точек С заштриховано голубым.
Объяснение:
Построим равносторонний треугольник АВО. Построим окружность с центром в точке О и радиусом АВ
Построим треугольники АЕВ, ADB, AFB с углами 30, 30 и 120.
Для точек, лежащих на окружности отрезок АВ имеет градусную меру в 30°, стягивающий центральный угол АОВ в 60°. Для точек внутри окружности угол АСВ будет больше 30°. Для точек за пределами окружности угол АСВ получится меньше 30 и точка С не может лежать за окружностью или на самой окружности.
Между лучами AF и AD угол ВАС удовлетворяет условию
30° < ∠ВАС < 120°
Аналогичная ситуация для лучей BD BF и точки В
Множество подходящих точек ограничено отрезками DE, EF и дугой DF
Так же точка C может лежать симметрично описанному ниже отрезка АВ и полным ответом будет фигура, напоминающая восьмёрку
Доказательство.
Пусть треугольники ABC и A1B1C1 такие, что AB=A1B1, AC=A1C1, BC=B1C1. Требуется доказать, что треугольники равны.
Допустим, что треугольники не равны. Тогда ∠ A ≠ ∠ A1, ∠ B ≠ ∠ B1, ∠ C ≠ ∠ C1 одновременно. Иначе треугольники были бы равны по первому признаку.
Пусть треугольник A1B1C2 – треугольник, равный треугольнику ABC, у которого вершина С2 лежит в одной полуплоскости с вершиной С1 относительно прямой A1B1.
Пусть D – середина отрезка С1С2. треугольники A1C1C2 и B1C1C2 равнобедренные с общим основанием С1С2. Поэтому их медианы A1D и B1D являются высотами. Значит, прямые A1D и B1D перпендикулярны прямой С1С2. Прямые A1D и B1D не совпадают, так как точки A1, B1, D не лежат на одной прямой. Но через точку D прямой С1С2 можно провести только одну перпендикулярную ей прямую. Мы пришли к противоречию. Теорема доказана. 53 Нравится
Геометрическое место точек С заштриховано голубым.
Объяснение:
Построим равносторонний треугольник АВО. Построим окружность с центром в точке О и радиусом АВ
Построим треугольники АЕВ, ADB, AFB с углами 30, 30 и 120.
Для точек, лежащих на окружности отрезок АВ имеет градусную меру в 30°, стягивающий центральный угол АОВ в 60°. Для точек внутри окружности угол АСВ будет больше 30°. Для точек за пределами окружности угол АСВ получится меньше 30 и точка С не может лежать за окружностью или на самой окружности.
Между лучами AF и AD угол ВАС удовлетворяет условию
30° < ∠ВАС < 120°
Аналогичная ситуация для лучей BD BF и точки В
Множество подходящих точек ограничено отрезками DE, EF и дугой DF
Так же точка C может лежать симметрично описанному ниже отрезка АВ и полным ответом будет фигура, напоминающая восьмёрку