Объясните как решается. 1. Если прямая пересекает одну из двух параллельных прямых, то:
a. другой прямой она перпендикулярна
b. другой прямой она параллельна
c. она пересекает и другую
d. с другой прямой она совпадает
2. Прямые m и n параллельны, c - секущая. Разность двух углов, образованных этими прямыми, равна 132°. Чему равно отношение большего из этих углов к меньшему?
a. 6,5
b. 4,8
c. 6,2
d. 5,8
Около тр-ка АВС опишем окружность.
АО2, ВО2 и СО2 - биссектрисы соответствующих углов.
Продолжим отрезок СО2 до пересечения его с описанной окружностью в некой точке К.
∠АО2К=∠А/2+∠С/2, т.к. ∠АО2К является внешним к тр-ку АСО2.
∠ВАК=АВК=∠С/2, т.к. оба опираются на те же дуги, на которые опираются равные углы из вершины тр-ка АВС. КА=КВ по этой же причине.
Заметим, что в тр-ке АКО2 ∠КАО2=∠АО2К, значит он равнобедренный.
КА=КО2=КВ, значит точка К - центр описанной около тр-ка АВО2 окружности.
Тр-ник АВС - равнобедренный. В нём СМ - биссектриса и высота. В прямоугольном тр-ке АСМ ∠А+∠С=90°. Заметим, что и в тр-ке АСК ∠САК=90°, значит ∠CВК=90°. СА и CВ - касательные к окружности с центром в точке К. Точки А и В лежат на этой окружности. Но СА и CВ - касательные к заданной окружности, значит точки К и О1 совпадают.
О1О2 - радиус заданной окружности, значит центр вписанной в тр-ник АВС окружности лежит на данной окружности.
Доказано.
P_MNK=a+b+c=36 дм,
P_MNL = a+l+c/2=24 дм,
P_MKL = b+l+c/2=20 дм.
Сложим второе и третье уравнения.
a+l+c/2+b+l+c/2=24 дм + 20 дм
a+b+c+2l=44 дм.
Отсюда l = (44 дм - (a+b+c))/2 = (44-36)/2 дм = 4 дм.
Задача 2.
∠C=74°. Пусть ∠A=2α, ∠B=2β. Тогда ∠B=180°-∠C-∠A=180°-74°-2α=106°-2α=2β. Отсюда β=(106°-2α)/2=53°-α.
Пусть искомый угол γ. Тогда α+β+γ=180°. γ=180°-(α+β)=180°-(α+53°-α)=127°.
Задача 3.
x+5=x^2
x^2-x-5=0
В любом случае это уравнение имеет 2 корня, поскольку это уравнение второй степени от одной переменной. Вопрос в том, действительные ли эти корни и являются ли они кратными. Корни квадратного уравнения являются комплексными, если дискриминант отрицателен. Корни квадратного уравнения являются кратными, если дискриминант равен 0 - в этом случае квадратное уравнение имеет два одинаковых корня.
D=(-1)^2-4*1*(-5)=21 > 0 - уравнение имеет два различных действительных корня.