РА - перпендикуляр к площади параллелограмма АВСД. Укажите вид параллелограмма, если РВ перпендикулярен ВС. а) ромб, б) прямоугольник; в) квадрат.
Объяснение: РВ - наклонная. АВ - её проекция на плоскость АВСД. По т. о 3-х перпендикулярах если наклонная (РВ) перпендикулярна прямой (ВС) на плоскости, то её проекция на ту же плоскость перпендикулярна данной прямой. Следовательно, АВ⊥ВС, и угол АВС - прямой. Противоположные углы параллелограмма равны. ⇒ ∠Д=∠В=90°, поэтому из суммы углов четырехугольника ∠А+∠С=360°-2•90°=180°, и каждый из них равен 180°:2=90°.
Углы четырехугольника АВСД прямые. ⇒ АВСД - прямоугольник. Он может быть и квадратом. если его стороны будут равны.
1. Е=120°, М=120°, К=60°, F=60°
2. P=60°, М=60°, N=120°, L=120°
(Надеюсь правильно)
Объяснение:
1.
Рассмотрим треугольники EFK и FMK,они равны по 3 признаку равенства треугольников.
Треугольник EFK равнобедренный,углы при основании равнобедренного треугольника равны=> угол k= углу f=30°. E= 180-(30*2)= 120°
В параллелограмме противоположные углы равны=> E=M=120°, K=F=60°
2.
Рассмотрим треугольники NPL и NML они равны по 3 признаку равенства треугольников. В равносторонеем треугольнике углы равны=> угол N= углу L= углу P= 180/3=60°
В параллелограмме противоположные углы равны=> угол P= углу М=60°, угол N= углу L=120°
РА - перпендикуляр к площади параллелограмма АВСД. Укажите вид параллелограмма, если РВ перпендикулярен ВС. а) ромб, б) прямоугольник; в) квадрат.
Объяснение: РВ - наклонная. АВ - её проекция на плоскость АВСД. По т. о 3-х перпендикулярах если наклонная (РВ) перпендикулярна прямой (ВС) на плоскости, то её проекция на ту же плоскость перпендикулярна данной прямой. Следовательно, АВ⊥ВС, и угол АВС - прямой. Противоположные углы параллелограмма равны. ⇒ ∠Д=∠В=90°, поэтому из суммы углов четырехугольника ∠А+∠С=360°-2•90°=180°, и каждый из них равен 180°:2=90°.
Углы четырехугольника АВСД прямые. ⇒ АВСД - прямоугольник. Он может быть и квадратом. если его стороны будут равны.