Для упрощения записей примем, что куб АВСDА1В1С1D1 - единичный, то есть его сторона равна 1. Скрещивающиеся прямые — прямые, которые не лежат в одной плоскости и не имеют общих точек или другими словами это две прямые в пространстве, не имеющие общих точек, и не являющиеся параллельными. Значит MN и A1C - скрещивающиеся прямые. Угол между скрещивающимися прямыми - это угол между любыми двумя пересекающимися прямыми, которые параллельны исходным скрещивающимся. Проведем прямую СР параллельно прямой MN. Угол А1СР - искомый угол. NA=√(АВ²+ВN²)=√(1+1/4)=√5/2 (по Пифагору). NM=√(NA²+AM²)=√(5/4+9/16)=√29/4 (по Пифагору). CP=NM=√29/4. CA1=√(2+1)=√3 (диагональ куба). А1Р=√(MA1²+MP²)=√(1/16+1/4)=√5/4. По теореме косинусов: Cosα=(CA1²+CP²-A1P²)/(2CA1*CP) или Cosα=(3+29/16-5/16)/(2√3*√29/4)=(72/16)/(√87\2)=9/√87. ответ: Cosα=9/√87.
Второй вариант решения - координатный метод. Пусть куб единичный, то есть сторона его "а"=1. Начало координат в точке С(0;0;0). Точка N(0;1/2;0), точка М(1;1;3/4), точка А1(1;1;1). Тогда вектор MN{-1;-1/2;-3/4}, его модуль |MN|=√(1+1/4+9/16)=√29/4. Вектор А1С{-1;-1;-1}, |A1C|=√(1+1+1)=√3. Cosα=(MN*A1C)/(|MN|*|A1C|) или Cosα=(1+1/2+3/4)/(√87/4)=9/√87. ответ: Cosα=9/√87.
Диагонали ромба взаимно перпендикулярны и точкой пересечения делятся пополам. Рассмотрим один из треугольников, образованного пересечением диагоналей. Он прямоугольный и его катеты равны √3 и 1. По теореме Пифагора:
Значит, ⇒ ∠BAC = 30°, т.к. напротив угла в 30° лежит катет, равный половине гипотенузы. ∠BAD = 2 · 30° = 60°, т.к. диагонали ромба являются биссектрисами его углов. ∠ABO = 90° - 30° = 60° ∠ABC = 2 · 60° = 120° ∠ABC = ADC = 120° и ∠BAD = ∠BCD = 60° - как противоположные углы ответ: 60°, 120°, 60°, 120.°.
Скрещивающиеся прямые — прямые, которые не лежат в одной плоскости и не имеют общих точек или другими словами это две прямые в пространстве, не имеющие общих точек, и не являющиеся параллельными.
Значит MN и A1C - скрещивающиеся прямые.
Угол между скрещивающимися прямыми - это угол между любыми двумя пересекающимися прямыми, которые параллельны исходным скрещивающимся.
Проведем прямую СР параллельно прямой MN. Угол А1СР - искомый угол.
NA=√(АВ²+ВN²)=√(1+1/4)=√5/2 (по Пифагору).
NM=√(NA²+AM²)=√(5/4+9/16)=√29/4 (по Пифагору).
CP=NM=√29/4.
CA1=√(2+1)=√3 (диагональ куба).
А1Р=√(MA1²+MP²)=√(1/16+1/4)=√5/4.
По теореме косинусов:
Cosα=(CA1²+CP²-A1P²)/(2CA1*CP) или
Cosα=(3+29/16-5/16)/(2√3*√29/4)=(72/16)/(√87\2)=9/√87.
ответ: Cosα=9/√87.
Второй вариант решения - координатный метод.
Пусть куб единичный, то есть сторона его "а"=1.
Начало координат в точке С(0;0;0).
Точка N(0;1/2;0), точка М(1;1;3/4), точка А1(1;1;1).
Тогда вектор MN{-1;-1/2;-3/4}, его модуль
|MN|=√(1+1/4+9/16)=√29/4.
Вектор А1С{-1;-1;-1}, |A1C|=√(1+1+1)=√3.
Cosα=(MN*A1C)/(|MN|*|A1C|) или
Cosα=(1+1/2+3/4)/(√87/4)=9/√87.
ответ: Cosα=9/√87.
Рассмотрим один из треугольников, образованного пересечением диагоналей.
Он прямоугольный и его катеты равны √3 и 1.
По теореме Пифагора:
Значит, ⇒ ∠BAC = 30°, т.к. напротив угла в 30° лежит катет, равный половине гипотенузы.
∠BAD = 2 · 30° = 60°, т.к. диагонали ромба являются биссектрисами его углов.
∠ABO = 90° - 30° = 60°
∠ABC = 2 · 60° = 120°
∠ABC = ADC = 120° и ∠BAD = ∠BCD = 60° - как противоположные углы
ответ: 60°, 120°, 60°, 120.°.