Объясните Окружность разделена двумя точками на две дуги.Найдите их угловые величины,если:1)угловая величина одной из них на 40° больше другой; 2)их угловые величины относятся как 2:7
АВСД - трапеция, Р=25 см , ∠Д=60° , АС - биссектриса, АС⊥СД . ΔАСД: ∠Д=60° , ∠АСД=90° ⇒ ∠САД=30° . Катет СД, лежащий против угла в 30° = половине гипотенузы АД ⇒ АД=2·СД Если обозначим СД=а, то АД=2а. Так как АС - биссектриса, то ∠ВАС=∠САД=30°. ∠ВАД=∠ВАС+∠САД=30°+30°=60° ⇒ ∠ВАД=∠АДС ⇒ трапеция равнобедренная ⇒ АВ=СД=а . ∠САД=∠ВСА как внутренние накрест лежащие ⇒ ∠ВСА=30°. Так как ∠ВАС=∠ВСА=30°, то ΔАВС - равнобедренный ⇒ АВ=ВС=а. Периметр Р=АВ+ВС+СД+АД=а+а+а+2а=5а 5а=25 ⇒ а=5 АВ=ВС=СД=5 см , АД=10 см .
Угол А = 60, значит и угол С = 60. Тогда угол Б и угол Д = 120. Из условия: угол ABD = 90, а угол CBD = 30. P = 30 см. BC = AD и AB = CD (т.к. всё это параллелограмм). P = 2AD+2BC 30 = 2BC+2AD 15 = BC+AD BC = 15 - AD В треугольнике ABD одноимённый угол 90 градусов, а угол А - 60, значит оставшийся угол 30. Тогда лежащий против угла в 30 градусов будет 1/2 гипотенузы. Гипотенуза тут как раз-таки AD. А против 30 градусов лежит AB, которая равна BC, поэтому продолжим называть её BC. Итак, BC = 1/2AD Вернемся к нашему периметру: BC = 15 - AD BC = 15 - 2BC 3BC = 15 BC = 5.
ΔАСД: ∠Д=60° , ∠АСД=90° ⇒ ∠САД=30° .
Катет СД, лежащий против угла в 30° = половине гипотенузы АД ⇒
АД=2·СД
Если обозначим СД=а, то АД=2а.
Так как АС - биссектриса, то ∠ВАС=∠САД=30°.
∠ВАД=∠ВАС+∠САД=30°+30°=60° ⇒
∠ВАД=∠АДС ⇒ трапеция равнобедренная ⇒ АВ=СД=а .
∠САД=∠ВСА как внутренние накрест лежащие ⇒ ∠ВСА=30°.
Так как ∠ВАС=∠ВСА=30°, то ΔАВС - равнобедренный ⇒
АВ=ВС=а.
Периметр Р=АВ+ВС+СД+АД=а+а+а+2а=5а
5а=25 ⇒ а=5
АВ=ВС=СД=5 см , АД=10 см .
Тогда угол Б и угол Д = 120.
Из условия: угол ABD = 90, а угол CBD = 30.
P = 30 см.
BC = AD и AB = CD (т.к. всё это параллелограмм).
P = 2AD+2BC
30 = 2BC+2AD
15 = BC+AD
BC = 15 - AD
В треугольнике ABD одноимённый угол 90 градусов, а угол А - 60, значит оставшийся угол 30.
Тогда лежащий против угла в 30 градусов будет 1/2 гипотенузы.
Гипотенуза тут как раз-таки AD.
А против 30 градусов лежит AB, которая равна BC, поэтому продолжим называть её BC.
Итак, BC = 1/2AD
Вернемся к нашему периметру:
BC = 15 - AD
BC = 15 - 2BC
3BC = 15
BC = 5.