Смотри, раз D удалена от точек вершин одинаково, то точка высоты из D будет центром описанной окружности, обозначу эту точку H, тогда HC = HA = HB (так как проекции одинаковых линий по 8 на плоскость треугольника будут равны, но вообще это рассматривается как задача) после имеет теорему синусов BC/cin30 = 2R, по свойству синуса , sin30 = BA/BC; cos30=AC/BA, cos30 = корень3/2, найдёт гипотенузу, после BC, теперь BC = 3*корень3, R=BC/cin30/2 = BC; так как син30 = 0.5, теперь так как DH высота к плоскости, то она перпендикулярна любой прямой в этой плоскости и радиусу тоже, а значит DH по пифагору = корень(8^2-r^2) = корень37, вот и ответ, но на всякий случай проверь, но ход решения такой, успехов :)
Нехай маємо прямокутний трикутник ABC (∠C=90), у якого AC=√5 см – катет і BH=4 см – проекція катета BC на гіпотенузу AB (за умовою).
прямокутний трикутник, рисунок Проведемо висоту CH=h до гіпотенузи AB (AB⊥CH).
За властивістю прямокутного трикутника
h^2= AH•BH
(це виводиться із подібності прямокутних трикутників ABC і CBH).
Нехай AH=x - проекція катета AC на гіпотенузу AB, тоді h^2=4x.
У прямокутному ΔACH (∠AHC=90), у якого AH=x і CH=h=2√x – катети, AC=√5 см – гіпотенуза, за теоремою Піфагора запишемо:
AH^2+CH^2=AC^2, x^2+4x=5, x^2+4x-5=0,
за теоремою Вієта, отримаємо
x1=1 і x2=-5<0, звідси AH=1 см.
AB=AH+BH=1+4=5 см – гіпотенуза ΔABC.
Відповідь: 5.