Если два внешних угла при различных вершинах равны между собой, это значит, что внутренние углы при этих вершинах также равны между собой, и треугольник равнобедренный.
1) Пусть основание треугольника равно а = 18 см, тогда боковая сторона равна b = 0,5 · (Р - а) = 0,5 · (78 - 18) = 30 (см)
2) Пусть боковые сторона равны по 18 см, то есть b = 18 см, тогда основание равно а = Р - 2b = 78 - 2 · 18 = 42 (см)
В этом случае не выполняется неравенство треугольника а < 2b потому что 42 > 36.
Пусть большая сторона равна а, а меньшая равна b. Тогда периметр параллелограмма равен: P = 112 = 2a + 2b Площадь параллелограмма можно считать по любой стороне. Если считаем по большей, то она равна: S = a*12 А если считать по меньшей, то она равна: S = b*30 И в том, и в другом случае результат одинаков, т. е.: a*12 = b*30 Вспомним про предыдущее уравнение: 112 = 2a + 2b Получим два уравнения с двумя неизвестными. Выразим а в последнем уравнении и подставим в первое: a = 56 - b 12*(56 - b) = 30*b 672 - 12b = 30b 672 = 42b b = 16 Ну а теперь найдем площадь: S = 30*b = 30*16 = 480 см. У меня в учебнике наподобие твоей. Это как образец.
Две другие стороны треугольника равны по 30 см
Объяснение:
Если два внешних угла при различных вершинах равны между собой, это значит, что внутренние углы при этих вершинах также равны между собой, и треугольник равнобедренный.
1) Пусть основание треугольника равно а = 18 см, тогда боковая сторона равна b = 0,5 · (Р - а) = 0,5 · (78 - 18) = 30 (см)
2) Пусть боковые сторона равны по 18 см, то есть b = 18 см, тогда основание равно а = Р - 2b = 78 - 2 · 18 = 42 (см)
В этом случае не выполняется неравенство треугольника а < 2b потому что 42 > 36.
Видим, что таким решение быть не может