Найдём сначала длину диагонали. Обозначим её за х. Исходя из того, что она делит трапецию на два подобных треугольника, получим: 4/х = х/9 х•х = 4•9 х² = 36 х = 6 см. Значит, диагональ равна 6 см. Длина окружности равна l = 2πr. Радиус вписанной окружности равен r = S/p. Площади подобных треугольников будут относиться так же, как м квадрат коэффициента подобия, полупериметры будут относиться как коэффициент подобия (p - полупериметр). Тогда r1/r2 = k. Коэффициент подобия равен 4/6 = 2/3. Тогда радиус меньшей окружности будет относиться к радиусу большей окружности как 2:3 и => длины окружностей будут относиться так же, как и радиусы. lмень = 18/3 • 2 = 12. ответ: 12.
(a² + b²)² = (2ab)²
a⁴ + 2a²b² + b⁴ = 4a²b²
a⁴ - 2a²b² + b⁴ = 0
(a² - b²)² = 0
a² = b²
a = b
Данное равенство невозможно по условию, отсюда следует, что a² + b² > 2ab
Для теоремы Пифагора будет справедливо тождество:
(a² + b²)² = (a² - b²)² + (2ab)²
a⁴ + 2a²b² + b⁴ = a⁴ - 2a²b² + b⁴ + 4a²b²
a⁴ + 2a²b² + b⁴ = a⁴ + 2a²b² + b⁴
0 = 0.
По обратной теореме Пифагора следует, что данный треугольник прямоугольный. Тогда сторона, равная a² - b² и сторона, равная 2ab - катеты.
ответ: a² - b², 2ab.
4/х = х/9
х•х = 4•9
х² = 36
х = 6 см.
Значит, диагональ равна 6 см.
Длина окружности равна l = 2πr.
Радиус вписанной окружности равен r = S/p.
Площади подобных треугольников будут относиться так же, как м квадрат коэффициента подобия, полупериметры будут относиться как коэффициент подобия (p - полупериметр).
Тогда r1/r2 = k.
Коэффициент подобия равен 4/6 = 2/3.
Тогда радиус меньшей окружности будет относиться к радиусу большей окружности как 2:3 и => длины окружностей будут относиться так же, как и радиусы. lмень = 18/3 • 2 = 12.
ответ: 12.