Диагонали квадрата равны, взаимно перпендикулярны и точкой пересечения делятся пополам. В клетчатой бумаге, как правило, линии взаимно перпендикулярны и образуют при пересечении равные клетки, как это бывает в школьной тетради. 1) Нарисуем диагональ ВД=8 клеток ( любое четное число, т.к. можно точно найти середину) 2) отметим его середину О - точку пересечения диагоналей 3) проведем через О отрезок длиной 8 клеток ( по 4 по обе стороны) 4) соединим концы отрезков. Получен квадрат со сторонами, равными АВ, который не проходит по сторонам клеток. Его стороны – гипотенузы треугольников с равными катетами, следовательно, равны.
"О" у нас будет центр окружности с радиусом R
"о" у нас будет центр окружности с радиусом r
берём где угодно ставим точку о, от неё например вправо проводи отрезок оО , который равен расстоянию между центрами окружности=d
второй шаг: выставляем на циркуле R, ставим его в точку О и чертим окружность
выставляем на циркуле r, ставим его в точку о и чертим окружность
третий шаг: смотрим и отвечаем
1) окружности будут пересекаться
2) окружности будут пересекаться
3) окружности не будут касаться друг друга
В клетчатой бумаге, как правило, линии взаимно перпендикулярны и образуют при пересечении равные клетки, как это бывает в школьной тетради.
1) Нарисуем диагональ ВД=8 клеток ( любое четное число, т.к. можно точно найти середину)
2) отметим его середину О - точку пересечения диагоналей
3) проведем через О отрезок длиной 8 клеток ( по 4 по обе стороны)
4) соединим концы отрезков. Получен квадрат со сторонами, равными АВ, который не проходит по сторонам клеток.
Его стороны – гипотенузы треугольников с равными катетами, следовательно, равны.