ОЧЕНЬ диаметр описанной около прямоугольного треугольника окружности равен 5. синус одного из углов треугольника равен 0.8 Верно ли что периметр этого треугольника равна 12 ?
1. ты уже задавал(а) 2. пусть при пересечении прямых а и б секущей с сумма односторонних углов равна 180 градусам, так как углы 3 и 4 смежные ( при одной прямой, секущей с ) и 3 +4 = 180 градусам, отсюда следует, что угол 1 ( односторонний с 4) равно углу 3, как накрест лежащие, поэтому а и б параллельны. 3. здесь могут быть два случая рассмотрены, когда сторона при равных внешних углах = 16 и сторона, при которой один из известных углов к ней прилижет, первый случай. если внешние углы равны, и они смежны и образуют с внутренними углами равные по градусам, ведь от 180 мы отнимаем равные углы, то получается, что треугольник равнобедренный с основанием равным 16 см, отсюда находим стороны, 74-16 и делим на два, 2 случай. если углы равны, то это тоже равнобедренный, боковая сторона = 16 см, значит ей равная тоже равна 16, отсюда 74-16*2 то есть это решение на нахождение основания треугольника
1)Расстоянием от точки до прямой называется длина перпендикуляра из этой точки к данной прямой. Любой другой отрезок, отличный от перпендикуляра, называется наклонной 2)Секущая - прямая по отношению к двум прямым, которая пересекает их в двух точках. При пересечении двух прямых секущей образуются накрест лежащие, односторонние и соответственные углы. Каждых видов углов по 4 пары. 3)теорема:Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, такие треугольники равны.
Доказательство: Выполним наложение данных в условии фигур. В результате данного действия вершины А и А1,C и С1 , отрезки АС и А1С1 совпадают. Если рассматривать треугольники в целом, то треугольные АБС совпадет с треугольником А1В1С1. Что и требовалось доказать.
2. пусть при пересечении прямых а и б секущей с сумма односторонних углов равна 180 градусам, так как углы 3 и 4 смежные ( при одной прямой, секущей с ) и 3 +4 = 180 градусам, отсюда следует, что угол 1 ( односторонний с 4) равно углу 3, как накрест лежащие, поэтому а и б параллельны.
3. здесь могут быть два случая рассмотрены, когда сторона при равных внешних углах = 16 и сторона, при которой один из известных углов к ней прилижет,
первый случай. если внешние углы равны, и они смежны и образуют с внутренними углами равные по градусам, ведь от 180 мы отнимаем равные углы, то получается, что треугольник равнобедренный с основанием равным 16 см, отсюда находим стороны, 74-16 и делим на два,
2 случай. если углы равны, то это тоже равнобедренный, боковая сторона = 16 см, значит ей равная тоже равна 16, отсюда 74-16*2 то есть это решение на нахождение основания треугольника
2)Секущая - прямая по отношению к двум прямым, которая пересекает их в двух точках.
При пересечении двух прямых секущей образуются накрест лежащие, односторонние и соответственные углы. Каждых видов углов по 4 пары.
3)теорема:Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, такие треугольники равны.
Доказательство: Выполним наложение данных в условии фигур. В результате данного действия вершины А и А1,C и С1 , отрезки АС и А1С1 совпадают. Если рассматривать треугольники в целом, то треугольные АБС совпадет с треугольником А1В1С1. Что и требовалось доказать.