отношение сторон 5:12:13 предполагает, что каждую из них можно разделить на какое-то количество равных отрезков (обозначь этот равный /единичный отрезок как хочешь
х,n, kну пусть как обычно х)
тогда стороны 5x , 12x , 13 x
по теореме Пифагора в прямоугольном треугольнике
c^2 =a^2+b^2
для наших сторон
(13x)^2 = (5x)^2 + (12x)^2
надо доказать, что это тождество СОБЛЮДАЕТСЯ
(13x)^2 = (5x)^2 + (12x)^2 < разделим обе части на x^2
Объяснение:
Пусть сторона квадрата в гробнице HQ=2х, тогда QN=x.
ΔABC- равносторонний значит высота CH- медиана ⇒HB=75 м.
ΔСНВ- прямоугольный , по т. Пифагора СН=√(150²-75²)=√(150-75)*(150+75)=√(75*225)=75√3≈129,75. Значит CQ=CH-QH=75√3-2x.
ΔCQNподобен ΔCHB по двум углам : ∠С-общий, ∠CQN=∠CHB=90°.
В подобных треугольниках сходственные стороны пропорциональны:
QN:HB=CQ:HC,
х:75=(75√3-2x):75√3
х*75√3=75*(75√3-2x)
х*75√3=75²√3-150x,
х*75√3+150х=75²√3,
х*75*(√3+2)=75²√3,
х=75√3:(√3+2)≈129,75:(1,73+2)=129,75:3,73≈34,7855(м)
Вся сторона квадрата равна 34,7855*2=69,571(м)
отношение сторон 5:12:13 предполагает, что каждую из них можно разделить на какое-то количество равных отрезков (обозначь этот равный /единичный отрезок как хочешь
х,n, kну пусть как обычно х)
тогда стороны 5x , 12x , 13 x
по теореме Пифагора в прямоугольном треугольнике
c^2 =a^2+b^2
для наших сторон
(13x)^2 = (5x)^2 + (12x)^2
надо доказать, что это тождество СОБЛЮДАЕТСЯ
(13x)^2 = (5x)^2 + (12x)^2 < разделим обе части на x^2
13^2 = 5^2 +12^2
169 = 25 +144 = 169
ДОКАЗАНО прямоугольный треугольник