AВСD - ромб. SO - перпендикуляр к его плоскости. SO = 36. AB=BC=CD=AD=45
Найти: SA = SC = ? и SD = SB = ?
Тр.AOD - прямоуг. ( по свойству диагоналей ромба). Так как диагонали (а значит и их половины) относятся как 4:3, обозначим 1 часть в этой пропорции за х. Тогда:
(4х)кв + (3х)кв = 45 кв 25х кв = 45 кв. 5х = 45 х = 9
Тогда АО = 4х = 36. DO= 3х = 27.
Из тр-ка SAO: SA = кор(АО кв + SO кв) = 36кор2.
Из тр-ка SDO: SD = кор(OD кв + SO кв) = кор(27 кв + 36 кв) = кор2025 = 45.
30 см
Объяснение:
Рассмотрим вложение.
Нам дан ΔАВС: ∠А = 90°, ВС = 13 см
Пусть АВ = х см, тогда АС = х + 7 см. Воспользуемся т.Пифагора для нахождения стороны.
АВ² + АС² = ВС²
х² + (х + 7)² = 13²
х² + х² + 14х + 49 = 169
2х² + 14х + 49 - 169 = 0
2х² + 14х - 120 = 0 |:2
х² + 7х - 60 = 0
D = 7² - 4 * (-60) = 49 + 240 = 289 = 17²
x₁ = (-7 - 17)/2 = -24/2 = -12
x₂ = (-7 + 17)/2 = 10/2 = 5
т.к. сторона не может быть отрицательна, то АВ = 5 см, тогда
АС = 5 + 7 = 12 см
Чтобы найти периметр треугольника, надо сложить все стороны.
Р = АВ + ВС + АС = 5 + 13 + 12 = 30 см
AВСD - ромб. SO - перпендикуляр к его плоскости. SO = 36. AB=BC=CD=AD=45
Найти: SA = SC = ? и SD = SB = ?
Тр.AOD - прямоуг. ( по свойству диагоналей ромба). Так как диагонали (а значит и их половины) относятся как 4:3, обозначим 1 часть в этой пропорции за х. Тогда:
(4х)кв + (3х)кв = 45 кв 25х кв = 45 кв. 5х = 45 х = 9
Тогда АО = 4х = 36. DO= 3х = 27.
Из тр-ка SAO: SA = кор(АО кв + SO кв) = 36кор2.
Из тр-ка SDO: SD = кор(OD кв + SO кв) = кор(27 кв + 36 кв) = кор2025 = 45.
ответ: 45; 36кор2; 45; 36кор2.