В соответствии с классическим определением, угол между векторами, отложенными от одной точки, определяется как кратчайший угол, на который нужно повернуть один из векторов вокруг своего начала до положения сонаправленности с другим вектором. Для заданного варианта углы между векторами могут быть определены из соотношения углов в треугольнике ABC, в котором ∠АСВ=90°, ∠СВА=40°, соответственно ∠САВ=180°-(90°+40°)=50°. Тогда -
- угол между векторами СА и СВ равен ∠АСВ=90°;
- угол между векторами ВА и СА равен ∠САВ=50°;
- угол между векторами СВ и ВА равен ∠САВ+∠АСВ=50°+90°=140°
Используем свойство подобия nn1/mm1 = nn2/mm2; 9/3 = nn2/5; nn2 = 9*5/3; nn2 = 15тоестьСоединим М1 и М2, N1 и N2. Получим прямоугольные треугольники ММ1М2 и NN1N2. Углы М1 и N1 у них прямые поскольку ММ1 и NN1 перпендикуляры к плоскости. Эти треугольники лежат в параллельных плоскостях поскольку пересекающиеся прямые их сторон перпендикулярны ребру двугранного угла. Следовательно угол ММ2М1= углу NN2N1. Значит эти треугольники подобны как прямоугольные с равным острым углом. Отсюда ММ2/ММ1=NN2/NN1. 5/3=NN2/9. Отсюда NN2=15
В соответствии с классическим определением, угол между векторами, отложенными от одной точки, определяется как кратчайший угол, на который нужно повернуть один из векторов вокруг своего начала до положения сонаправленности с другим вектором. Для заданного варианта углы между векторами могут быть определены из соотношения углов в треугольнике ABC, в котором ∠АСВ=90°, ∠СВА=40°, соответственно ∠САВ=180°-(90°+40°)=50°. Тогда -
- угол между векторами СА и СВ равен ∠АСВ=90°;
- угол между векторами ВА и СА равен ∠САВ=50°;
- угол между векторами СВ и ВА равен ∠САВ+∠АСВ=50°+90°=140°
О нас