SO перпендикуляр к плоскости многоугольника. Рассмотрим треугольники SOM, SOQ, SOP, SON. Они все равны (прямоугольный, гипотенузы равны, а катет общий), тогда отрезки OM, OQ, OP, ON равны. Наконец, по теореме о трех перпендикулярах OM перпендикулярно AB, OQ - AD, OP - CD, ON - BC. Т.к. длины отрезков равны, а расстояние от точки до прямой измеряется по перпендикуляру, опущенному из этой точки на прямую, то О равноудалена от сторон многоугольника. Т.к. О принадлежит плоскости многоугольника, то О - центр вписанной окружности, ч.т.д.
Пусть углы при осн.равны-х ,тогда тупой угол равен 4х ,медиана в равноб.треуг так же явл высотой и биссектрисой ,получается ,что треуг (который получается при делении большего высотой ,т.есть любой из них, они оба равны ) прямоуг. высота перпен.осн. значит один из углов равен 90град. следовательно на остальные 2 так же приходится 90 град .значит х+2х =90 ,тогда х=30 гдад. теперь по свойству .катеп (т.есть (медиана =а) лежащий против угла в 30 град равен половине гипотинузы (боковой стороны треуг ) значит боковая сторона=2а