Теорема: каждая сторона треугольника меньше суммы двух других сторон.
Доказательство: рассмотрим произвольный треугольник АВС и докажем, что АВ<АС+СВ
Отложим на продолжении стороны АС отрезок СД равный стороне СВ. В равнобедренном треугольнике ВСД угол 1 = углу 2, а в треугольнике АВД угол АВД > угла 1 и значит угол АВД > угла 2. Так как в треугольнике против большого угла лежит большая сторона то АВ < АД. Но АД = АС + СД = АС + СВ, поэтому АВ< АС + СВ. Теорема доказана.
Теорема: каждая сторона треугольника меньше суммы двух других сторон.
Доказательство: рассмотрим произвольный треугольник АВС и докажем, что АВ<АС+СВ
Отложим на продолжении стороны АС отрезок СД равный стороне СВ. В равнобедренном треугольнике ВСД угол 1 = углу 2, а в треугольнике АВД угол АВД > угла 1 и значит угол АВД > угла 2. Так как в треугольнике против большого угла лежит большая сторона то АВ < АД. Но АД = АС + СД = АС + СВ, поэтому АВ< АС + СВ. Теорема доказана.
•Примем сторону АС за «х», СВ за «у», СК за «z».
•Рассмотрим треугольник ВКС:
Выразим гипотенузу ВС через катеты ВК и КС: у^2 = 36^2 + z^2
•Рассмотрим треугольник СКА:
Выразим гипотенузу СА через катеты СК и КА: z^2 + 4^2= x^2
•Рассмотрим треугольник АВС, найдём гипотенузу: АВ= 36+4 = 40. Выразим через катеты: х^2 + у^2 = 40^2
• Составим систему уравнений:
х^2 + у^2 = 40^2
y^2= 36^2+ z^2
x^2= z^2+4^2
•решаем:
z(СК)= 12, x (АС)= 4 квадратный корень из 10, у(CB)= 12 квадратный корень из 10
•найдём периметр треугольника:
Р = АС + ВС + АВ = 40 + 4 квадратный корень из 10 + 12 квадратный корень из 10 = 40 + 16 квадратный корень из 10
ответ: катеты равны: 4 квадратный корень из 10, 12 квадратный корень из 10. Р= 40 + 16 квадратный корень из 10