ОЧЕНЬ . Наклонная HK, проведенная из точки H к плоскости, равна 16. Чему равна проекция наклонной на плоскость, если угол между прямой HK плоскостью равен 45°?
По свойству параллельности прямых если одна из пары параллельных прямых параллельна третей прямой то и другая прямя из пары параллельна третей в нашем случае А║В и А║С ⇒В║С Расстояние между прямым В и С будет зависеть от расположения прямой С которая может находиться по разные стороны от прямой А на расстоянии 6дм тогда, при условии что расстояние от А до В равно 4дм, расстояние между В и С можт быть 1) 6-4=2 Дм при условии что В и С лежат по одну сторону от А 2) 6+4=10 Дм при условии что В и С лежат по разные стороны от А
В треугольнике угол A=30° угол C=45° а высота BD= 4 см.
Найдите стороны треугольника.
----------------------
Высота ВД противолежит углу, равному 30º. ⇒ BD равна половине гипотенузы ∆ АВД.
Гипотенуза АВ=4*2=8 см.
АD найдем по т.Пифагора:
АD²=АВ²-ВD²
АD=√(64-16)=√48
АD=4√3 см
В прямоугольном ∆ ВDС острый угол ВСD=45º, ⇒ угол СВD=45º,
∆ СВD - равнобедренный, СD=ВD=4 см
По т.Пифагора ВС=4√2 см ( проверьте)
Тогда АС=АD+DС=4√3+4=4(√3+1)
Стороны равны
АВ=8,
ВС=4√2
AC =4(√3+1)
-----------
Если Вы уже изучали тригонометрические функции, то можно использовать их значение для заданных углов.
АВ=ВD:sin30º=4:0,5=8 см
BC=BD:sin45º=4:(√2)/2=4√2 см
АС=АD+DС=4√3+4=4(√3+1) см
Расстояние между прямым В и С будет зависеть от расположения прямой С которая может находиться по разные стороны от прямой А на расстоянии 6дм тогда, при условии что расстояние от А до В равно 4дм,
расстояние между В и С можт быть
1) 6-4=2 Дм при условии что В и С лежат по одну сторону от А
2) 6+4=10 Дм при условии что В и С лежат по разные стороны от А