Очень нужна Диагональ прямоугольника в полтора раза длиннее одной из его сторон. Другая сторона прямоугольника равна 3 корня из 5. Какова длина диагонали? ответ должен быть 9
Решить треугольник - найти его характеристики по заданным условиям. Нам надо найти угол BAC, стороны AC и AB. Найдём угол BAC: BAC = 180° - (30° + 105°) = 180° - 135° = 45° По теореме синусов найдём сторону AC: (BC)/(sinBAC) = (AC)/(sinABC); (3√2)/(√2/2) = (AC)/(1/2); AC = (3√2 * 1/2)/(√2/2) = 3√2 * 1/2 * 2/√2 = (3√2)/(√2) = 3 см По той же теореме синусов найдём сторону AB: (AC)/(sinABC) = (AB)/(sinBCA); sin105° = sin(50+50+5) = 0.766 + 0.766 + 0.0871 = 1.6191 (3)/(1/2) = (AB)/(1.6191); AB = (3 * 1.6191)/(1/2) = 3 * 1.6191 * 2 = 9.7146 ≈ 10 см ответ: угол BAC = 45°; AC = 3 см; AB = 10 см
Сначала выкладываю чертёж к задаче. Сначала проанализируем условие задачи. Нам дана правильная четырёхугольная призма. А что это такое вообще? Во-первых, у правильной призмы в основании лежит правильный многоугольник. Ну в нашем случае по названию понятно, что в основании лежит правильный четырёхугольник, то есть. квадрат. Также у правильном призмы боковые рёбра перпендикулярны плоскости основания, наша призма не исключение из этого правила. Итак, мы поняли, что за объект перед нами. Теперь можем осознанно решать задачу. Проведём диагональ призмы(она у меня на рисунке красная). Немножко неаккуратно вышло, но понять можно. Все данные задачи отмечены также на моём чертеже.
1)Надо найти угол между диагональю и плоскостью основания. А что это? Вспомним определение: углом между прямой и плоскостью называется угол между прямой и её проекцией на эту плоскость. Грубо говоря, я беру две какие-либо точки самой прямой, провожу перпендикуляры из них на плоскость основания, затем основания перпендикуляров соединяю. Полученная прямая на плоскости основания называется проекцией прямой на плоскость основания. то же у нас тут? Нам надо найти проекцию диагонали AC1 на плоскость основания. Одна точка прямой лежит уже на основании - это точка А. Следовательно, нам надо спроецировать на эту плоскость точку С1. Проводим из неё перпендикуляр на плоскость основания. Это С1С - по определению прямой призмы боковое ребро перпендикулярно плоскости основания. Соединяем точки A и C, получаем AC - проекцию AC1 на плоскость основания. По определения угла между прямой и плоскостью, получаем, что <C1AC - искомый.
2)Найдём этот угол. Для этого рассмотрю треугольник AC1C. Он прямоугольный, поскольку C1C перп. плоскости основания, значит, перп любой прямой в этой плоскости, в том числе и AC. Итак, <C1CA = 90 градусам. CC1 = 5 по условию. AC = 8sqrt 2( в квадрате диагональ в корень из двух раз больше стороны) Отсюда находим тангенс нашего угла: tg <C1AC = CC1/AC = 5/8sqrt2 Тогда <C1AC = arctg 5/8sqrt2 Это ответ.
Найдём угол BAC:
BAC = 180° - (30° + 105°) = 180° - 135° = 45°
По теореме синусов найдём сторону AC:
(BC)/(sinBAC) = (AC)/(sinABC);
(3√2)/(√2/2) = (AC)/(1/2);
AC = (3√2 * 1/2)/(√2/2) = 3√2 * 1/2 * 2/√2 = (3√2)/(√2) = 3 см
По той же теореме синусов найдём сторону AB:
(AC)/(sinABC) = (AB)/(sinBCA);
sin105° = sin(50+50+5) = 0.766 + 0.766 + 0.0871 = 1.6191
(3)/(1/2) = (AB)/(1.6191);
AB = (3 * 1.6191)/(1/2) = 3 * 1.6191 * 2 = 9.7146 ≈ 10 см
ответ: угол BAC = 45°; AC = 3 см; AB = 10 см
Сначала проанализируем условие задачи. Нам дана правильная четырёхугольная призма. А что это такое вообще? Во-первых, у правильной призмы в основании лежит правильный многоугольник. Ну в нашем случае по названию понятно, что в основании лежит правильный четырёхугольник, то есть. квадрат. Также у правильном призмы боковые рёбра перпендикулярны плоскости основания, наша призма не исключение из этого правила. Итак, мы поняли, что за объект перед нами. Теперь можем осознанно решать задачу. Проведём диагональ призмы(она у меня на рисунке красная). Немножко неаккуратно вышло, но понять можно. Все данные задачи отмечены также на моём чертеже.
1)Надо найти угол между диагональю и плоскостью основания. А что это? Вспомним определение: углом между прямой и плоскостью называется угол между прямой и её проекцией на эту плоскость. Грубо говоря, я беру две какие-либо точки самой прямой, провожу перпендикуляры из них на плоскость основания, затем основания перпендикуляров соединяю. Полученная прямая на плоскости основания называется проекцией прямой на плоскость основания. то же у нас тут? Нам надо найти проекцию диагонали AC1 на плоскость основания. Одна точка прямой лежит уже на основании - это точка А. Следовательно, нам надо спроецировать на эту плоскость точку С1. Проводим из неё перпендикуляр на плоскость основания. Это С1С - по определению прямой призмы боковое ребро перпендикулярно плоскости основания. Соединяем точки A и C, получаем AC - проекцию AC1 на плоскость основания. По определения угла между прямой и плоскостью, получаем, что <C1AC - искомый.
2)Найдём этот угол. Для этого рассмотрю треугольник AC1C. Он прямоугольный, поскольку C1C перп. плоскости основания, значит, перп любой прямой в этой плоскости, в том числе и AC. Итак, <C1CA = 90 градусам.
CC1 = 5 по условию. AC = 8sqrt 2( в квадрате диагональ в корень из двух раз больше стороны)
Отсюда находим тангенс нашего угла:
tg <C1AC = CC1/AC = 5/8sqrt2
Тогда <C1AC = arctg 5/8sqrt2
Это ответ.