Очень нужно Користуючись малюнком, укажіть кут, вертикальний куту FOK BUC А о L F/к Виберіть одну відповідь: втрутовідь Окут АОВ Окут Вос Окут FОВ Окут кос
Для начала вспомним, что для расчета объема потребуется высота пирамиды. Мы можем найти ее по теореме Пифагора. Для этого нам потребуется длина диагонали, а точнее – ее половина. Тогда зная две из сторон прямоугольного треугольника, мы сможем найти высоту. Для начала находим диагональ: d^2=a^2+a^2 Подставим значения в формулу: d^2=6^2+6^2=36+36=72 cm
Высоту h мы найдем с и ребра b: h=sqrt{{d/2}^2+b^2} h=sqrt{{{72}/2}^2+5^2}=sqrt{36+25}=sqrt{61}=7,8 cm
Теперь найдем площадь квадрата, который лежит в основании правильной пирамиды: S=6^2=36{cm}^2 Подставим найденные значения в формулу расчета объема: V={1/3}*36*7,8=14,6{cm}^3
Если по условиям даны длина ребра c правильной пирамиды и длина стороны основания a, то можно найти значение по следующей формуле: S_bok={1/2}a sqrt{5^2-{{6^2}/4}}=3*sqrt 16}=12
Площадь всей пирамиды равна: S=4*S_bok + S_osn= 4*12 + 36=84
Проводим две параллельные прямые и проводим секущую. У нас получаются углы: накрест лежащие, односторонние и соответственные. Смотрим на первые два угла (например это верхняя прямая. Углы образуются, когда через прямую проводят секущую), обозначим их угол 1 и угол 2. Так как угол один и угол два - смежные, следовательно мы из 180-126=54 градуса. А далее, смотрим на рисунок и получается, что угол 1 и угол вертикальный углу 1 равны (свойства вертикальных углов), а так же угол 1 и угол, который находится на второй прямой, так же когда его пересекает секущая, эти углы тоже равны, так как это соответственные углы (а они равны), а так же еще один угол, который вертикальный предыдущему углу так же равен по свойству вертикальных углов. С углом в 54 градуса та же самая хрень, те же вертикальные углы и т.д. Так надо?
d^2=a^2+a^2
Подставим значения в формулу:
d^2=6^2+6^2=36+36=72 cm
Высоту h мы найдем с и ребра b:
h=sqrt{{d/2}^2+b^2}
h=sqrt{{{72}/2}^2+5^2}=sqrt{36+25}=sqrt{61}=7,8 cm
Теперь найдем площадь квадрата, который лежит в основании правильной пирамиды:
S=6^2=36{cm}^2
Подставим найденные значения в формулу расчета объема:
V={1/3}*36*7,8=14,6{cm}^3
Если по условиям даны длина ребра c правильной пирамиды и длина стороны основания a, то можно найти значение по следующей формуле:
S_bok={1/2}a sqrt{5^2-{{6^2}/4}}=3*sqrt 16}=12
Площадь всей пирамиды равна:
S=4*S_bok + S_osn= 4*12 + 36=84
Так надо?