В прямоугольном треугольнике АВД угол А = 90 - 40 = 50 гр в прямоугольном треугольнике ВДС угол С = 90 - 10 = 80гр тогда получаем, что в треугольнике АВС углы равны 50, 50 и 80 градусов. так как в тр-ке два угла равны, то он равнобедренный АВ - основание высоты тр-ка пересекаются в точке О, рассмотрим тр-ик СДО он прямоугольный, т.к ВД высота по условию. угол С = 40гр (80 : 2 - высота, проведенная к основанию является биссектрисой) угол ВОС это внешний угол тр-ка СДО. внешний угол треугольника равен сумме углов не смежных с ним, т.е Угол ВСО = угол С + угол Д = 40 + 90 = 130гр
В треугольнике ABC высота CD делит угол C на два угла, причём угол ACD=25 градусов,угол BCD= 40 градусов.
а) Докажите, что треугольник ABC - равнобедренный,и укажите его боковые стороны.
СD - высота. Следовательно, угол АDС=90º
Тогда ∠ САD=180º-90º-25º=65º
∠ВСА=25º+40º=65º
∠ВАС=∠ВСА. Равные углы при стороне АС - признак равнобедренного треугольника. ⇒ АВ=ВС
Доказано.
б)
Высоты данного треугольника пересекаются в точке O. Найдите угол BOC.
ВМ - высота ∆ АВС. Угол ВМС=90º
Для ∆ МОС угол ВОС - внешний и равен сумме двух других, не смежных с ним.
∠ВОС=90º+25º=115º