1) Биссектриса АК: Из вершины А, как из центра, откладываем циркулем равные отрезки АЕ и АО на сторонах АВ и АС.. Из точек О и Е проводим полуокружности равным радиусом больше половины ЕО. Точки пересечения окружностей по обе стороны ЕО соединяем прямой до пересечения с ВС в точкой К. АК - срединный перпендикуляр равнобедренного треугольника АОЕ. Следовательно, он - биссектриса. АК-биссектриса угла А. --- 2) Медиана ВМ. Для ее построения нужно найти середину стороны ВС, для чего из В и С чертим полуокружности радиусом больше половины ВС и точки их пересечения по обе стороны соединяем. Точка М пересечения этого отрезка и стороны ВС - середина ВС. ВМ - медиана. 3) Высота СН Из вершины С как из центра раствором циркуля, равным стороне СВ, делаем насечку на стороне АВ. Из этой точки и точки В как их центров раствором циркуля с одинаковым радиусом строим полуокружности. Соединяем отрезком точки их пересечения по обе стороны от АВ. Пересечение этого отрезка с АВ - основание Н высоты СН. Соединим С и Н. СН - высота треугольника АВС.
Две прямые в трехмерном пространстве называются скрещивающимися, если они не лежат в одной плоскости и не параллельны. Значит диагонали А1В и В1С - скрещивающиеся прямые (дано). Угол между скрещивающимися прямыми – это угол между двумя пересекающимися прямыми, которые соответственно параллельны заданным скрещивающимся прямым. Перенесем В1С параллельно так, чтобы она проходила через точку А1. Прямые А1В и А1С2 теперь пересекающиеся и угол между ними - это угол С2А1В. Прямую В1С мы переносили параллельно, значит СС2 параллельна и равна ВА и ВС. Угол АСС2 равен углу ВАС, как внутренние накрест лежащие при параллельных ВА и СС2 и секущей АС. Но угол ВАС - угол равностороннего треугольника и равен 60°, так же как и угол ВСА. Следовательно, треугольник ВСС2 равнобедренный, в котором основание ВС2=2*(√3/2)а или ВС2=а√3, где а - сторона основания призмы (поскольку ВС2=2*ВН, где ВН - высота основания - равностороннего треугольника). Треугольник С2А1В - равнобедренный, с боковыми сторонами - диагоналями боковых сторон призмы, равными а√2 и основанием ВС2, равным а√3. Искомый угол найдем из теоремы косинусов: Cosα= (a²+b²-c²)/2ab, где α - угол между сторонами а и b. В нашем случае Cosα= (2a²+2а²-3а²)/(2а√2а√2) = 1/4 =0,25. Тогда сам угол α = arccos(0,25). или α≈75,5°.
Координатный метод: Привяжем призму к системе координат. пусть стороны нашего равностороннего треугольника равны 1. Тогда точка А1(0;1;1), точка В(0;0;0), точка B1(0;1;0), точка С(√3/2;0;1/2). Координаты вектора равны разности соответствующих координат точек его конца и начала. Значит BА1{0;1;1}, а B1C{√3/2;-1;1/2}. Угол между векторами А1В и В1С найдем по формуле: cosα=(x1*x2+y1*y2+z1*z2)/[√(x1²+y1²+z1²)*√(x2²+y2²+z2²)], или cosα=(0+(-1)+1/2)/[√(0²+1+1)*√(3/4+1+1/4)]= 1/4. Что, естественно, совпадает с чисто геометрическим вариантом, но насколько проще!
Из вершины А, как из центра, откладываем циркулем равные отрезки АЕ и АО на сторонах АВ и АС.. Из точек О и Е проводим полуокружности равным радиусом больше половины ЕО.
Точки пересечения окружностей по обе стороны ЕО соединяем прямой до пересечения с ВС в точкой К. АК - срединный перпендикуляр равнобедренного треугольника АОЕ. Следовательно, он - биссектриса.
АК-биссектриса угла А.
---
2) Медиана ВМ.
Для ее построения нужно найти середину стороны ВС, для чего из В и С чертим полуокружности радиусом больше половины ВС и точки их пересечения по обе стороны соединяем. Точка М пересечения этого отрезка и стороны ВС - середина ВС.
ВМ - медиана.
3) Высота СН
Из вершины С как из центра раствором циркуля, равным стороне СВ, делаем насечку на стороне АВ. Из этой точки и точки В как их центров раствором циркуля с одинаковым радиусом строим полуокружности.
Соединяем отрезком точки их пересечения по обе стороны от АВ.
Пересечение этого отрезка с АВ - основание Н высоты СН.
Соединим С и Н.
СН - высота треугольника АВС.
Значит диагонали А1В и В1С - скрещивающиеся прямые (дано).
Угол между скрещивающимися прямыми – это угол между двумя пересекающимися прямыми, которые соответственно параллельны заданным скрещивающимся прямым.
Перенесем В1С параллельно так, чтобы она проходила через точку А1. Прямые А1В и А1С2 теперь пересекающиеся и угол между ними - это угол С2А1В.
Прямую В1С мы переносили параллельно, значит СС2 параллельна и равна ВА и ВС. Угол АСС2 равен углу ВАС, как внутренние накрест лежащие при параллельных ВА и СС2 и секущей АС.
Но угол ВАС - угол равностороннего треугольника и равен 60°, так же как и угол ВСА. Следовательно, треугольник ВСС2 равнобедренный, в котором основание ВС2=2*(√3/2)а или ВС2=а√3, где а - сторона основания призмы (поскольку
ВС2=2*ВН, где ВН - высота основания - равностороннего треугольника).
Треугольник С2А1В - равнобедренный, с боковыми сторонами - диагоналями боковых сторон призмы, равными а√2 и основанием ВС2, равным а√3.
Искомый угол найдем из теоремы косинусов: Cosα= (a²+b²-c²)/2ab, где α - угол
между сторонами а и b.
В нашем случае Cosα= (2a²+2а²-3а²)/(2а√2а√2) = 1/4 =0,25.
Тогда сам угол α = arccos(0,25). или α≈75,5°.
Координатный метод:
Привяжем призму к системе координат.
пусть стороны нашего равностороннего треугольника равны 1.
Тогда точка А1(0;1;1), точка В(0;0;0), точка B1(0;1;0), точка С(√3/2;0;1/2).
Координаты вектора равны разности соответствующих координат точек его конца и начала. Значит BА1{0;1;1}, а B1C{√3/2;-1;1/2}.
Угол между векторами А1В и В1С найдем по формуле:
cosα=(x1*x2+y1*y2+z1*z2)/[√(x1²+y1²+z1²)*√(x2²+y2²+z2²)], или
cosα=(0+(-1)+1/2)/[√(0²+1+1)*√(3/4+1+1/4)]= 1/4.
Что, естественно, совпадает с чисто геометрическим вариантом, но насколько проще!