задача 1
1) исходя из условия, что относятся как 6/6/7 (как длина/ширина/высота), то AB=BC=CD=AD=6, ABCD - квадрат.
2) диагональ нижней и верхней грани, а миенно квадрата, равна "а" корень из 2, где "а" - сторона квадрата. Следовательно AC=6 корней из 2
3) С1С=7
BC=6
из т. Пифагора найдем C1D= корень из85
ответ: AB1=B1C=C1D=A1D=корень из 85
B1D=BD=6корней из 2
задача 2
Скрещивающиеся прямые. Если две прямые не лежат в одной плоскости не параллельны одна другой и не пересекаются, они называются скрещивающимися.
наименьшее ребро 2, а именно СС1=DD1=AA1=BB1=2
скрещивающиеся прямые тут - AD и CD , например, а расстояние и естьAD = 4
задача3
середіна AA1 - L, если не ошибаюсь сечение есть треугольник B1CD
Объяснение:
1.
Дано: ΔАВС.
АВ = ВС;
ВЕ - медиана;
∠АВЕ = 44°
Найти: ∠АВС; ∠FEC.
Рассмотрим ΔАВС.
АВ = ВС ⇒ ΔАВС - равнобедренный.
⇒ ВЕ - высота и биссектриса.
∠АВЕ = ∠ЕВС = 44° (ВЕ - биссектриса)
⇒ ∠АВС = ∠АВЕ + ∠ЕВС = 44° + 44° = 88°
BF ⊥ АС (ВЕ - высота)
⇒ ∠FEC = 90°
2.
АВ = ВС; АО = ОС;
ОК - биссектриса.
Найти: ∠АОК.
АО = ОС ⇒ ВО - медиана.
⇒ ВО - высота, то есть ∠ВОС = 90°.
ОК - биссектриса ⇒ ∠ВОК = ∠КОС = 90° : 2 = 45°
∠АОК = ∠АОВ + ∠ВОК = 90° + 45° = 135°
задача 1
1) исходя из условия, что относятся как 6/6/7 (как длина/ширина/высота), то AB=BC=CD=AD=6, ABCD - квадрат.
2) диагональ нижней и верхней грани, а миенно квадрата, равна "а" корень из 2, где "а" - сторона квадрата. Следовательно AC=6 корней из 2
3) С1С=7
BC=6
из т. Пифагора найдем C1D= корень из85
ответ: AB1=B1C=C1D=A1D=корень из 85
B1D=BD=6корней из 2
задача 2
Скрещивающиеся прямые. Если две прямые не лежат в одной плоскости не параллельны одна другой и не пересекаются, они называются скрещивающимися.
наименьшее ребро 2, а именно СС1=DD1=AA1=BB1=2
скрещивающиеся прямые тут - AD и CD , например, а расстояние и естьAD = 4
задача3
середіна AA1 - L, если не ошибаюсь сечение есть треугольник B1CD
Объяснение:
1.
Дано: ΔАВС.
АВ = ВС;
ВЕ - медиана;
∠АВЕ = 44°
Найти: ∠АВС; ∠FEC.
Рассмотрим ΔАВС.
АВ = ВС ⇒ ΔАВС - равнобедренный.
В равнобедренном треугольнике высота, проведенная к основанию, является медианой и биссектрисой.⇒ ВЕ - высота и биссектриса.
∠АВЕ = ∠ЕВС = 44° (ВЕ - биссектриса)
⇒ ∠АВС = ∠АВЕ + ∠ЕВС = 44° + 44° = 88°
BF ⊥ АС (ВЕ - высота)
⇒ ∠FEC = 90°
2.
Дано: ΔАВС.
АВ = ВС; АО = ОС;
ОК - биссектриса.
Найти: ∠АОК.
Рассмотрим ΔАВС.
АВ = ВС ⇒ ΔАВС - равнобедренный.
АО = ОС ⇒ ВО - медиана.
В равнобедренном треугольнике медиана, проведенная к основанию, является высотой.⇒ ВО - высота, то есть ∠ВОС = 90°.
ОК - биссектриса ⇒ ∠ВОК = ∠КОС = 90° : 2 = 45°
∠АОК = ∠АОВ + ∠ВОК = 90° + 45° = 135°