По условию углы при основании трапеции равны(т.к. она равнобедренная), следовательно в получившемся прямоугольном треугольнике, образованным диагональю, большим основанием и боковой стороной острые углы равны 60 гр. и 30 гр. Боковая сторона этого треугольника есть катет, лежащий против угла в 30 гр., следовательно он равен произведению другого катета и tg 30. Получаем 6*tg 30=6*V3/3=2V3 Следовательно боковые стороны и меньшее основание равны 2V3. Найдем большее основание. Оно есть гипотенуза в образованном прямоугольном треугольнике. Боковая сторона есть катет, лежащий против угла в 30 гр., следовательно она меньше гипотенузы в два раза. Т.о. большее основание равно двум боковым сторонам, т.е. 2*2V3=4V3. Далее находим периметр. Большее основание равно 6
В первой задаче пользуемся формулой: площадь треугольника равна произведению его сторон на синус угла между ними, в итоге получаем 6*6*корень из 3, деленное на 2. Решаем, получаем 18 корней из 3. Во второй задаче площадь трапеции находится по формуле: полусумма оснований умножить на высоту. Нам не известна высота, но её находим через получившийся треугольник ABH, где Н=90 гр., А=30 гр. Получается, через синус угла А находим сторону ВН, которая получается равной 8 см. И уже по формуле площади находим её: 12+20/2*8=128 см.
Получаем 6*tg 30=6*V3/3=2V3
Следовательно боковые стороны и меньшее основание равны 2V3.
Найдем большее основание. Оно есть гипотенуза
в образованном прямоугольном треугольнике. Боковая сторона есть катет, лежащий против угла в 30 гр., следовательно она меньше гипотенузы в два раза. Т.о. большее основание равно двум боковым сторонам, т.е. 2*2V3=4V3. Далее находим периметр.
Большее основание равно 6
Во второй задаче площадь трапеции находится по формуле: полусумма оснований умножить на высоту. Нам не известна высота, но её находим через получившийся треугольник ABH, где Н=90 гр., А=30 гр. Получается, через синус угла А находим сторону ВН, которая получается равной 8 см. И уже по формуле площади находим её: 12+20/2*8=128 см.
Могу ошибиться в вычислениях.