ОЧЕНЬ Постройте ромб ABCD и его образ при повороте вокруг точки A на 100° против часовой стрелки.
2. При параллельном переносе на вектор m {1; 4} данная точка A отображается в точку B. Найдите координаты точки B, если A (3; -2).
3. Дана окружность с радиусом 4 и центром в точке C (-2; 5). Запишите уравнение окружности, на которую отображается данная окружность при параллельном переносе на вектор m {3; 2}.
4. Начертите правильный четырёхугольник. Выполните его поворот на 45° вокруг его центра.
1-й признак подобия треугольников
( подобие треугольников по двум углам)
Если два угла одного треугольника равны двум углам другого треугольника, то такие треугольники подобны.
2-й признак подобия треугольников
( подобие треугольников по двум сторонам и углу между ними)
Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, образованные этими сторонами, равны, то такие треугольники подобны.
3-й признак подобия треугольников
( подобие треугольников по трём сторонам)
Если стороны одного треугольника пропорциональны сторонам другого треугольника, то такие треугольники подобны.
Есть еще 4-й признак подобия треугольников —
( подобие треугольников по двум сторонам и наибольшему углу)
Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника, а наибольший угол одного равен наибольшему углу другого, то такие треугольники подобны.
Доказав, что треугольники подобны, можно использовать свойства подобных треугольников.
Для доказательства подобия прямоугольных треугольников используют другие признаки. Их мы запишем в следующий раз.
Подобие правильных и подобие равнобедренных треугольников рассмотрим позже.
Признаки подобия треугольников широко используются при решении задач как в курсе планиметрии, так и в курсе стереометрии. Например, на основании подобия прямоугольных треугольников доказывается свойство биссектрисы треугольника.
значит ∠BAC=∠ACB=30° => ΔABC равнобедренный, от этого следует что AB=BC
Если построить высоту с угла A на сторону BC, то он образует прямой треугольник CAH с углом ∠ACH=30° => AH=sin30°AC=1/2*4=2см
Если построить высоту с угла C на большее основание AD то он образует два прямоугольных треугольника ACH₁ и DCH₁
из ΔACH₁ CH₁=AH=2см AC=4см значит по Пифагору AH₁=√AC²-CH₁²=√12
H₁D=8-√12
из ΔDCH₁ CH₁=AH=2см H₁D=8-√12 значит по Пифагору CD²=CH₁²+H₁D²
CD²=4+(8-√12)²=4+64-16√12+12=80-16√12
CD=