Около окружности можно описать трапецию тогда и только тогда, когда сумма оснований равна сумме боковых сторон. Следовательно, сумма оснований равна 5+5=10, и отсюда большее основание равно 10-2=8 Опустив из вершины тупого угла высоту, отсечем от большего основания отрезок, равный полуразности оснований (трапеция равнобедренная). Он равен (8-2):2=3 Из получившегося прямоугольного треугольника: Гипотенуза = боковая сторона=5 Катет = полуразности оснований=3 найдем высоту (второй катет). Т.к. это явно египетский треугольник, высота равна 4. (можете проверить т. Пифагора) Площадь трапеции равна произведению высоты на полусумму оснований: S=h(a+b):2 S=4*5=20
∠ВКС=180° - [180°-(∠КВА+∠КАВ)] как смежный углу ВКА⇒
∠ВКС=∠КВА+∠КАВ.
Так как ВК биссектриса, то ∠СВК=∠АВК, из чего следует, что
∠ ВКС больше ∠КВС
В треугольнике против большего угла лежит большая сторона ⇒
ВС лежит против большего угла, следовательно, ВС > СК.
---------
Решение будет короче, если вы уже знаете, что внешний угол треугольника равен сумме двух внутренних, не смежных с ним. Тогда угол СКВ больше угла КВА. Т.к. ВК биссектриса, то , угол СКВ больше ∠ КВС, который равен углу КВА. Поэтому ВС больше КС, который в ∆ АВК лежит против меньшего угла.
Следовательно, сумма оснований равна 5+5=10, и отсюда большее основание равно 10-2=8
Опустив из вершины тупого угла высоту, отсечем от большего основания отрезок, равный полуразности оснований (трапеция равнобедренная).
Он равен (8-2):2=3
Из получившегося прямоугольного треугольника:
Гипотенуза = боковая сторона=5
Катет = полуразности оснований=3
найдем высоту (второй катет).
Т.к. это явно египетский треугольник, высота равна 4. (можете проверить т. Пифагора)
Площадь трапеции равна произведению высоты на полусумму оснований:
S=h(a+b):2
S=4*5=20
Рассмотрим ∆ СВК.
Сумма углов треугольника 180° ⇒
∠ВКС=180°-(∠ВСК+∠СВК)
В ∆ ВАК из суммы углов треугольника
∠ВКА=180°-(∠КВА+∠КАВ)
∠СКА=180° ( развёрнутый)⇒
∠ВКС=180°- ∠ВКА ⇒
∠ВКС=180° - [180°-(∠КВА+∠КАВ)] как смежный углу ВКА⇒
∠ВКС=∠КВА+∠КАВ.
Так как ВК биссектриса, то ∠СВК=∠АВК, из чего следует, что
∠ ВКС больше ∠КВС
В треугольнике против большего угла лежит большая сторона ⇒
ВС лежит против большего угла, следовательно, ВС > СК.
---------
Решение будет короче, если вы уже знаете, что внешний угол треугольника равен сумме двух внутренних, не смежных с ним. Тогда угол СКВ больше угла КВА. Т.к. ВК биссектриса, то , угол СКВ больше ∠ КВС, который равен углу КВА. Поэтому ВС больше КС, который в ∆ АВК лежит против меньшего угла.