очень С решением Определите, какие из
векторов перпендикулярны(-1; 3), (2;- 13), с (- 12; -3).
А) и ; Б) и с ;
В) и с ; Г) определить невозможно.
Найдите скалярное
произведение векторов (2; -3) и (4;-8).
А) 32; Б) -38; В) -16; Г) 192.
Дано векторы (3; 2) и (0;-1).
Найдите вектор с= -2+4 и его
модуль.
Найдите m и n, если векторы
(-4; m), (2;-3), с (n; 9) коллинеарны
Найдите угол М в треугольнике с вершинами М(2; 4√3), А(-2;0), К(2;0)
OB=OC
(т.к. диагонали прямоугольника равны)
AO=OD
AB=ED(т.к. противоположные стороны равны)
Значит треугольник AOB=EOD
В равных треугольниках соответствующие элементы равны ⇒ угол ODC = углу OAB = 56 градусов.
Рассмотрим треугольник AOB - равнобедренный (т.к. диагонали прямоугольника равны и точкой пересечения делятся пополам)
В равнобедренном треугольнкие углы при основании равны, значит угол OAB= углу OBA = 56 градусов.
Сумма углов треугольника равна 180 градусов, значит угол AOB = 180-56-56=68 градусов
ответ:68 градусов
Площадь треугольника - половина произведения основания на высоту к основанию.
Высота - перпендикуляр к основанию.
29) S= 20*7/2 =70
30) S= 33*8/2 =132
В прямоугольном треугольнике катеты перпендикулярны, поэтому один катет считаем основанием, а другой - высотой к основанию. Площадь равна половине произведения катетов.
31) S= 8*15/2 =60
Катет против угла 30 равен половине гипотенузы. Отсюда по теореме Пифагора находим отношение сторон.
В треугольнике с углами 30, 90 стороны относятся как 1:√3:2
32) S= 8*8√3/2 =32√3, ответ: 32√3/√3 =32
33) S= 5*5√3/2 =12,5 √3, ответ: 12,5 √3/√3 =12,5
В прямоугольном треугольнике сумма острых углов равна 90. Следовательно, если один острый угол 45, то и другой 45. Углы при основании равны - треугольник равнобедренный.
Прямоугольный треугольник с углом 45 - равнобедренный.
34) S= 7*7/2 =24,5
35) S= 12*12/2 =72
36) По теореме Пифагора x= √(41^2 -9^2) =√((41-9)(41+9)) =√(32*50) =40
S= 9*40/2 =180