Очень ! В координатной системе находится равнобедренный треугольник ABC (AC=BC). Проведены медианы AN и BM к боковым сторонам треугольника. Длина стороны AB = 4, а высоты CO = 16. Определи координаты вершин треугольника, координаты точек M и N и длину медиан AN и BM (oтвет округли до сотых). A( )? B( )? C( )? N( )? M( )? AN= BM=
Пусть начало координат в точке А. Тогда А(0;0)
И сторона AB расположена по направлению оси ОХ. Тогда, так как АВ=14, то B(14;0).
Высота СО делит АВ пополам. Значит, С(7;0). И, так как длина этой высоты 20, то С(7;20).
Точка N - Середина стороны СВ. Чтобы найти координаты середины, нужно вычислить среднее арифметическое координат концов отрезка.
N((14+7)/2;(20+0)/2)=N(10.5;10).
Аналогично считаем M:
M((7+0)/2;(20+0)/2)=M(3.5;2.).
Чтобы найти длины медиан, сначала найдём координаты векторов. И, так как AC=BC, то достаточно посчитать только AN.
Чтобы найти координаты вектора, надо от координат конца отнять координаты начала:
AN(10.5-0;10-0)=AN(10.5;10)
Чтобы найти длину вектора, надо посчитать корень из суммы квадратов координат(теорема Пифагора)
|AN|=√(10,5^2+10^2)=√210.25=14.5
Объяснение: