При пересечении двух прямых образуются четыре угла.
Вертикальные углы — у которых стороны одного угла являются продолжениями сторон другого угла. Вертикальные углы равны. Есть две пары вертикальных углов — ∠1 и ∠3, ∠2 и ∠4.
Смежные углы — два угла, у которых одна сторона общая, а две другие дополняют друг друга до прямой. Смежные углы в сумме равны 180°. Есть четыре пары смежных углов — ∠1 и ∠2, ∠2 и ∠3, ∠3 и ∠4, ∠1 и ∠4.
При пересечении двух прямых образуются четыре угла.
Вертикальные углы — у которых стороны одного угла являются продолжениями сторон другого угла. Вертикальные углы равны. Есть две пары вертикальных углов — ∠1 и ∠3, ∠2 и ∠4.
Смежные углы — два угла, у которых одна сторона общая, а две другие дополняют друг друга до прямой. Смежные углы в сумме равны 180°. Есть четыре пары смежных углов — ∠1 и ∠2, ∠2 и ∠3, ∠3 и ∠4, ∠1 и ∠4.
По условию, сумма трёх углов равна 196°.
∠1 + ∠2 + ∠3 = 196°.
∠1 и ∠2 — смежные углы, ∠1 + ∠2 = 180°, => ∠3 = 196° – 180° = 16°.
∠1 и ∠3 — вертикальные углы, ∠1 = ∠3 = 16°, => ∠2 = 196° – 16° – 16° = 164°.
Итого, ∠1 = ∠3 = 16°, ∠2 = ∠4 = 164°.
Меньший угол — ∠1 и ∠3 — равен 16°.
ответ: 16°.
Найти расстояние между прямыми L1 и L2
L1: 4x-3y-12=0.
L2: 4x-3y+20=0.
Решение.
Прямая L1 имеет свободный член C1=-12 и направляющий вектор
n1={-В1, А1}={3; 4}.
Прямая L2 имеет свободный член C2=20 и направляющий вектор
n2={-В2, А2}={3; 4}.
Так как нормальные векторы прямых L1 и L2 совпадают, то расстояние между ними можно вычислить формулой:
d = | C 1 − C 2 | / √(A ² + B²). (1)
Подставим значения A1, B1, C1, C2 в (1):
d = | − 12 − 20 | / (√ ( 4 ² +(-3) ²) = 35/5 = 6,4
Расстояние между прямыми равно d=6,4.