Решение: Пусть: длина прямоугольника (а) ширина прямоугольника равна (в) Отношение сторон равно: а/в=4/3 Отсюда: а=4*в/3=4в/3 Стороны прямоугольника можно найти по Теореме Пифагора Известна диагональ прямоугольника, которая является гипотенузой (c) прямоугольного треугольника: c²=а²+в² подставим вместо значения (а) а=4в/3 20²=(4в/3)²+в² 20²=16в²/9+в² 9*20²=16в²+9*в² 9*400=25в² 3600=25в² в²=3600 : 25 в²=144 в1,2=+-√144=+-12 в1=12 (см)- ширина прямоугольника в2=-12 - не соответствует условию задачи а=4в/3=4*12/3=16 (см)- длина прямоугольника
А1.по теореме Пифагора квадрат гипотенузы равен сумме квадратов катетов квадрат гипотенузы равен 3^2+4^2=25
гипотенуза равна корень(25)= 5 см
ответ: 5 см
А2.вводим переменную x
2x-одна сторона
3x-смежная с ней
сторона MK равна 2x а сторона KP 3x гипотенуза 5
по теореме Пифагора a²+b²=c²
(2x)²+(3x)²=5
4x²+9x²=5
13x²=5
x²=5÷13
x=√5÷13
меньшая сторона 2x =2×√5÷13
А3.Внутренний угол C=180-150=30
Тут 2 случая:
1). В=90
Пусть АВ =х . Катет, лежащий против угла 30 градусов равен половине гипотенузы:
Значит, АС= 2х
Тогда 2х=х=4; х=4
ответ: АВ=4
2).А=90
Пусть АВ =х . Катет, лежащий против угла 30 градусов равен половине гипотенузы:
Значит, ВС= 2х
Тогда 2х=х=4; х=4
ответ: АВ=4
А4.рассмотрим ΔВОС. в нем ОВ=6/2=3
ОС=8/2=4 т.к диагонали делятся пополам в месте пересечения
∠ВОС=90°, т.к диагонали перпендикулярны по св-ву.
ВС-? , ⇒
по т пифагора
ВС²=ОВ²+ОС²
ВС²=9+16
ВС²=25
ВС=5
Пусть:
длина прямоугольника (а)
ширина прямоугольника равна (в)
Отношение сторон равно:
а/в=4/3
Отсюда:
а=4*в/3=4в/3
Стороны прямоугольника можно найти по Теореме Пифагора
Известна диагональ прямоугольника, которая является гипотенузой (c) прямоугольного треугольника:
c²=а²+в² подставим вместо значения (а) а=4в/3
20²=(4в/3)²+в²
20²=16в²/9+в²
9*20²=16в²+9*в²
9*400=25в²
3600=25в²
в²=3600 : 25
в²=144
в1,2=+-√144=+-12
в1=12 (см)- ширина прямоугольника
в2=-12 - не соответствует условию задачи
а=4в/3=4*12/3=16 (см)- длина прямоугольника
ответ: Стороны прямоугольника равны; 16см; 4см