ІІ.
очис...Но, оyptULL
предели слова по их лексическому значению. Спиши.
11. Определи слова
командная игра на льду на коньках с шайбой - ... .
o Дорога с рядами деревьев по сторонам - ... .
Человек, который совершает поездку на поезде, паро
але или другом виде транспорта, - ..
билет
а Место, где продают билеты, – ... .
транспорт
5. Дорога, покрытая асфальтом, -
я тоже прикинь и теперь влюбился в Знакомьтесь с клавиатурой Gboard! Здесь будет сохраняться текст, который вы копируете.Нажмите на фрагмент, чтобы вставить его в текстовое поле.Знакомьтесь с клавиатурой Gboard! Здесь будет сохраняться текст, который вы копируете.Нажмите на фрагмент, чтобы вставить его в текстовое поле.Знакомьтесь с клавиатурой Gboard! Здесь будет сохраняться текст, который вы копируете.Нажмите на фрагмент, чтобы вставить его в текстовое поле.Знакомьтесь с клавиатурой Gboard! Здесь будет сохраняться текст, который вы копируете.Нажмите на фрагмент, чтобы вставить его в текстовое поле.Знакомьтесь с клавиатурой Gboard! Здесь будет сохраняться текст, который вы копируете.Нажмите на фрагмент, чтобы вставить его в текстовое поле.Знакомьтесь с клавиатурой Gboard! Здесь будет сохраняться текст, который вы копируете.Нажмите на фрагмент, чтобы вставить его в текстовое поле.Знакомьтесь с клавиатурой Gboard! Здесь будет сохраняться текст, который вы копируете.Нажмите на фрагмент, чтобы вставить его в текстовое поле.
↑АС = ↑р = ↑а + ↑b
↑DB = ↑q = ↑a - ↑b
Чтобы найти угол между векторами p и q, построим вектор, равный вектору q, с началом в точке А.
∠ЕАС - искомый.
Из ΔABD найдем длину вектора q по теореме косинусов:
|↑q|² = AB² + AD² - 2·AB·AD·cos60° = 25 + 64 - 2·5·8·1/2 = 89 - 40 = 49
|↑q| = 7
Сумма углов параллелограмма, прилежащих к одной стороне, равна 180°, значит ∠АВС = 120°.
Из ΔABС найдем длину вектора р по теореме косинусов:
|↑p|² = AB² + BC² - 2·AB·BC·cos120° = 25 + 64 + 2·5·8·1/2 = 89 + 40 = 129
|↑p| = √129
Из ΔЕАС по теореме косинусов:
cos α = (AE² + AC² - EC²) / (2 · AE · AC)
cos α = (49 + 129 - 256) / (2 · 7 · √129) = - 78 / (14√129) = - 39√129 / 903
cos α = - 13√129/301