Очка пересечения O — серединная точка для обоих отрезков PG и RS. Найди величину сторон PR и RO в треугольнике PRO, если GS = 29 см и SO = 21,4 см (При ответе упорядочи вершины таким образом, чтобы углы при них были попарно равны.) А. Так как отрезки делятся пополам, то
1. сторона RO в треугольнике PRO равна стороне *** в треугольнике GSO;
2. сторона PO в треугольнике PRO равна стороне *** в треугольнике GSO.
Угoл ROP равен углу *** как вертикальный угол.
Треугольники равны по первому признаку равенства треугольников. В равных треугольниках соответствующие стороны равны.
Соединим точку Е с точкой К. ВК является проекцией наклонной ЕК на плоскость АВСD. Поскольку ВК - высота ромба. то ВК ⊥ AD.
По теореме о трёх перпендикулярах: если AD ⊥ BK (проекции наклонной ЕК), то AD⊥ ЕК. Следовательно, ∠ЕКВ = α является линейным углом, служащим мерой двугранного угла между плоскостями ADE и АВСD.
ответ:24 пи*корень 2
α = 45°
Объяснение:
Смотри прикреплённый рисунок.
Из вершины В ромба проводим высоту ВК.
ВК = а · sin A = a · sin 60° = 0.5a√3.
Соединим точку Е с точкой К. ВК является проекцией наклонной ЕК на плоскость АВСD. Поскольку ВК - высота ромба. то ВК ⊥ AD.
По теореме о трёх перпендикулярах: если AD ⊥ BK (проекции наклонной ЕК), то AD⊥ ЕК. Следовательно, ∠ЕКВ = α является линейным углом, служащим мерой двугранного угла между плоскостями ADE и АВСD.
Найдём этот угол.
tg α = BE : BK = 0.5a√3 : 0.5a√3 = 1.
Следовательно, ∠α = 45°