Пусть будет трапеция АВСD, BC и AD - основания. Площадь трапеции - это полусумма оснований помноженная на высоту. Высоту не обязательно опускать из вершины. Проведём высоту так, чтобы центр вписанной окружности лежал на ней. Пусть это будет высота НК, О - центр вписанной окружности. Это возможно, если точки Н и К - точки касания окружности с основаниями трапеции (радиус, проведённый в точку касания, перпендикулярен касательной). Средняя линия трапеции - это полусумма оснований, значит, площадь трапеции можно найти как средняя линия помноженная на высоту. У нас есть длина средней линии - 5, и если площадь - 40, значит, высота НК=40\5=8. НК=ОН+ОК=2ОК => ОК=8\2=4 - радиус вписанной окружности.
2.
AO = OB (радиусы), а один угол 60°, значит другие две также по 60, значит треугольник равносторонний. Таким образом х = 8.
ответ: 8.
4.
Весь круг - 360°
Дуга KL = 360° - 143° - 77° = 140°
Угол х опирается на эту дугу и он вписанный, значит равен половине дуги:
х = 140°/2 = 70°
ответ: 70°
6.
KN - диаметр, значит дуга KMN равна 180 градусам.
Дуга МК равна 180° - 124° = 56°
Угол MNK вписанный, равен половине дуги МК
х = 56°/2 = 28°
ответ: 28°
8.
Дуга МК равна 360° - 46° - 112° = 202°
х равен половине дуги МК
х = 101°
ответ: 101°
Задачи 4,6,8 однотипные
ответ: 4.