Один из катетов прямоугольного треугольника на 4 см меньше гипотенузы, а второй катет - 12 см. Точка за плоскостью треугольника отдалена от каждой с его вершин на 26 см. Найти расстояние от данной точки к плоскости треугольника!
1.Дополнительные построения :АН параллельно ВСDК параллельно АН2. <КDA + <EDC=90* (смежные с прямым углом) ] } <EDC = <KAD<KAD + <KDA =90*(по т. о сумме углов треугольника)]3.<EDC = <KAD] } Треугольники АКD и DEC - подобны, из чего следует, что <AKD = <DEC ] k( коэффициент подобия) = AD/DC=AK/DE=2/3AK=DE*k=9*2/3=6KHED- прямоугольник ( все углы прямые) }KH+DE=9AH=AK+KH=15Sabc=AH*BC/2 } BC= 2*Sabc/AH=60/15=4 ответ : 4 см
Трапеция ABCD. BC=2-меньшее основание, AD=8-большее основание, угол В=углу А=90 – т.к. трапеция прямоугольная. Угол D=45. Если из вершины С опустить высоту СН на основание АD, то получится прямоугольник АВСН и прямоугольный треугольник СНD. Прямоугольник АВСН: ВС=АН=2- противолежащие стороны прямоугольника, тогда НD=AD-AH=8-2=6. Прямоугольный треугольник СНD: угол D=45, угол СНD=90 (СН-высота), следовательно угол HCD=180- угол D- угол СНD=180-45-90=45, отсюда треугольник СНD еще и равнобедренный, а тогда СН=НD=6. S трапеции=0,5*(ВС+AD)*CH=0,5*(2+8)*6=30