Один из концов отрезка АВ, точка В, удалён от плоскости a на 9 см, а его середина М – на 4 см. Найти расстояние от точки А до плоскости a, если отрезок АВ пересекает плоскость a
Проведём высоту к основанию ,которая одновременно является и медианой.Из образованного ею прямоугольного треугольника с гипотенузой =10 см и катетом равным половине основания равнобедренного треугольника 12:2=6 см, найдем второй катет.
По теореме Пифагора h=√a²-1/2c²=√10²-6²=√100-36=√64=8 см
SΔ=1/2c*h=1/2*12*8=48 см²
2.
Медиана делит гипотенузу напополам,а середина гипотенузы является центром описанной окружности .Гипотенуза является её диаметром,а медиана треугольника, проведенного из прямого угла,является её радиусом. d=2r r=d/2,значит медиана равна половине гипотенузы.
Пусть одна сторона треугольника равна х см; вторая сторона- 4х см; третья сторона- 5х см.
Периметр треугольника - сумма всех сторон.
Составляем уравнение:
х+4х+5х=50
10х=50
х=50/10
х=5 см первая сторона треугольника
4*5=20 см вторая сторона треугольника.
5*5=25 см третья сторона треугольника.
Для того, чтобы треугольник существовал необходимо чтобы сохранялось неравенство: сумма двух сторон треугольника должна быть больше третьей стороны.
5+20=25 (неравенство не сохраняется, такого треугольника нет). Дальнейшее решение не возможно.
Так как стороны треугольника отрезки, а не лучи, то "При таких значениях треугольник является вырожденным, т.е. представляет собой ОТРЕЗОК, на котором расположены все три вершины
При таких значениях треугольник является вырожденным, т.е. представляет собой развернутый угол.
Вписать окружность не возможно, описать можно, тогда радиус описанной окружности будет равен 25:2=12,5см. Чертеж прилагаю. АВС- вырожденный треугольник. АВ=25см; АС=5см; СВ=20см
Площадь по Герону
S=√(р(р-а)(р-b)(p-c))
p=P/2=50/2=25см.
S=√(25(25-5)(25-20)(25-25))=√(25*20*5*0)=
=√0
R=(a*b*c)/4S формула нахождения радиуса описанной окружности. (Решения нет, т.к. площади треугольника нет)
r=S/p формула нахождения радиуса вписанной окружности, где р- полупериметр треугольника; (Решения нет, т.к. площади треугольника нет).
Объяснение:
1.
дано:а=в=10 см,с=12см -основание
найти: SΔ?
Проведём высоту к основанию ,которая одновременно является и медианой.Из образованного ею прямоугольного треугольника с гипотенузой =10 см и катетом равным половине основания равнобедренного треугольника 12:2=6 см, найдем второй катет.
По теореме Пифагора h=√a²-1/2c²=√10²-6²=√100-36=√64=8 см
SΔ=1/2c*h=1/2*12*8=48 см²
2.
Медиана делит гипотенузу напополам,а середина гипотенузы является центром описанной окружности .Гипотенуза является её диаметром,а медиана треугольника, проведенного из прямого угла,является её радиусом. d=2r r=d/2,значит медиана равна половине гипотенузы.
Условие задачи некорректно составлено.
Объяснение:
Пусть одна сторона треугольника равна х см; вторая сторона- 4х см; третья сторона- 5х см.
Периметр треугольника - сумма всех сторон.
Составляем уравнение:
х+4х+5х=50
10х=50
х=50/10
х=5 см первая сторона треугольника
4*5=20 см вторая сторона треугольника.
5*5=25 см третья сторона треугольника.
Для того, чтобы треугольник существовал необходимо чтобы сохранялось неравенство: сумма двух сторон треугольника должна быть больше третьей стороны.
5+20=25 (неравенство не сохраняется, такого треугольника нет). Дальнейшее решение не возможно.
Так как стороны треугольника отрезки, а не лучи, то "При таких значениях треугольник является вырожденным, т.е. представляет собой ОТРЕЗОК, на котором расположены все три вершины
При таких значениях треугольник является вырожденным, т.е. представляет собой развернутый угол.
Вписать окружность не возможно, описать можно, тогда радиус описанной окружности будет равен 25:2=12,5см. Чертеж прилагаю. АВС- вырожденный треугольник. АВ=25см; АС=5см; СВ=20см
Площадь по Герону
S=√(р(р-а)(р-b)(p-c))
p=P/2=50/2=25см.
S=√(25(25-5)(25-20)(25-25))=√(25*20*5*0)=
=√0
R=(a*b*c)/4S формула нахождения радиуса описанной окружности. (Решения нет, т.к. площади треугольника нет)
r=S/p формула нахождения радиуса вписанной окружности, где р- полупериметр треугольника; (Решения нет, т.к. площади треугольника нет).