Пусть JH искомое расстояние. JH перпендикулярно BC. Поскольку JA перпендикулярна плоскости,то AH проекция перпендикуляра JH на плоскость. Откуда по теореме о 3 перпендикулярах: выходит что AH перпендикулярна BC,то есть высота треугольника ABC. Меньший угол всегда лежит против меньшей стороны ,то есть напротив стороны BC=27 Найдем площадь треугольника по формуле Герона: p=(51+30+27)/2=54 S=sqrt(54*3*24*27)=324 Откуда : раз S=AH*BC/2 AH=324*2/27=24 И наконец по теореме Пифагора: JH^2=10^2+24^2=676=26^2 JH=26 ответ: JH=26
Определение. Расстояние от точки до прямой
равно длине перпендикуляра, опущенного из точки на прямую
Объяснение:
Если задано уравнение прямой Ax + By + C = 0, то расстояние от точки M(Mx, My) до прямой можно найти, используя следующую формулу
d = |A·Mx + B·My + C|
√A2 + B2
● Найти расстояние между прямой 3x + 4y - 6 = 0 и точкой M(-1, 3).
Решение. Подставим в формулу коэффициенты прямой и координаты точки
d = |3·(-1) + 4·3 - 6| = |-3 + 12 - 6| = |3| = 0.6
√32 + 42 √9 + 16 5
ответ: расстояние от точки до прямой равно 0.6.
думаю так;)
Поскольку JA перпендикулярна плоскости,то
AH проекция перпендикуляра JH на плоскость.
Откуда по теореме о 3 перпендикулярах: выходит что AH перпендикулярна BC,то есть высота треугольника ABC.
Меньший угол всегда лежит против меньшей стороны ,то есть напротив стороны BC=27
Найдем площадь треугольника по формуле Герона:
p=(51+30+27)/2=54
S=sqrt(54*3*24*27)=324
Откуда : раз S=AH*BC/2
AH=324*2/27=24
И наконец по теореме Пифагора:
JH^2=10^2+24^2=676=26^2
JH=26 ответ: JH=26