2R sin(&/2) ;2r tg(&/2) ; &- угол с вершиной вцентре тре--ка образованного стороной и ценром ; большой и малыйрадиусы - соответственно. Справедливо для любого правильного мн - ка.
тааакссс второе ты похоже пропустила буковку с когда написала м см ведь имеются ввиду?Я проходила это задание в 9 м классе
1. Во вписанном тр-ке сторона = радиусу = 9. 2. В описанном: высота правильного трка с основанием, = стороне, = 9. Угол при вершине тр-ка = 36. Находи по синусу.
третье
Апофема (от греч. apotithçмi — откладываю в сторону), 1) длина перпендикуляра, опущенного из центра правильного многоугольника на любую из его сторон .
Т.е. высота правильного треугольника со стороной 14. Формула в любом учебнике.
Дан треугольник, две стороны которого равны по 10 см, третья - 12 см. Этот треугольник равнобедренный. Обозначим его АВС, АВ=ВС. Проведем высоту ВН к основанию. Высота равнобедренного треугольника, проведенная к основанию, является его медианой. ⇒ АН=СН=6 см. По т.Пифагора ВН=√(АВ²-АН²)=√(100-36)=8 см. Высоты к боковым сторонам равнобедренного треугольника равны. Найдем их из площади ∆ АВС.
Ѕ(АВС)=АС•ВН:2=48 см² В то же время Ѕ(АВС)=СМ•АВ:2, поэтому СМ•10:2=48 см², откуда СМ=АК=96:10=9,6 см.
первое
2R sin(&/2) ;2r tg(&/2) ; &- угол с вершиной вцентре тре--ка образованного стороной и ценром ; большой и малыйрадиусы - соответственно. Справедливо для любого правильного мн - ка.
тааакссс второе ты похоже пропустила буковку с когда написала м см ведь имеются ввиду?Я проходила это задание в 9 м классе
1. Во вписанном тр-ке сторона = радиусу = 9.
2. В описанном: высота правильного трка с основанием, = стороне, = 9. Угол при вершине тр-ка = 36. Находи по синусу.
третье
Апофема (от греч. apotithçмi — откладываю в сторону), 1) длина перпендикуляра, опущенного из центра правильного многоугольника на любую из его сторон .
Т.е. высота правильного треугольника со стороной 14. Формула в любом учебнике.
Дан треугольник, две стороны которого равны по 10 см, третья - 12 см. Этот треугольник равнобедренный. Обозначим его АВС, АВ=ВС. Проведем высоту ВН к основанию. Высота равнобедренного треугольника, проведенная к основанию, является его медианой. ⇒ АН=СН=6 см. По т.Пифагора ВН=√(АВ²-АН²)=√(100-36)=8 см. Высоты к боковым сторонам равнобедренного треугольника равны. Найдем их из площади ∆ АВС.
Ѕ(АВС)=АС•ВН:2=48 см² В то же время Ѕ(АВС)=СМ•АВ:2, поэтому СМ•10:2=48 см², откуда СМ=АК=96:10=9,6 см.