98°; 79°
Объяснение:
Возьмём ΔABC, в котором AB=BC, а AC - основание. Рассмотрим 2 случая.
1. ∠BAC < ∠ABC.
1) ∠BAC = ∠BCA по свойству углов при основании равнобедренного Δ.
2) Пусть x - ∠BAC, тогда x - ∠BCA и (x+57) - ∠ABC. По теореме о ∠+∠+∠ Δ ∠BAC + ∠BCA + ∠ABC = 180°. Составим и решим уравнение:
x + x + (x+57) = 180
2x + x + 57 = 180
3x = 180 - 57
3x = 123
x = 41° - ∠BAC
∠ABC = x + 57 при x = 41.
Если x = 41, то x + 57 = 41 + 57 = 98° - ∠ABC
2. ∠ABC < ∠BAC
1) см. 1) в 1.
2) Пусть x - ∠ABC, тогда (x+57) - ∠BAC и (x+57) - ∠BCA. -//-:
x + 2(x+57) = 180
x + 2x + 114 = 180
3x = 180 - 114
3x = 66
x = 22° - ∠ABC
∠BAC = x + 57 при x = 22.
Если x = 22, то x + 57 = 22 + 57 = 79° - ∠ABC
98°; 79°
Объяснение:
Возьмём ΔABC, в котором AB=BC, а AC - основание. Рассмотрим 2 случая.
1. ∠BAC < ∠ABC.
1) ∠BAC = ∠BCA по свойству углов при основании равнобедренного Δ.
2) Пусть x - ∠BAC, тогда x - ∠BCA и (x+57) - ∠ABC. По теореме о ∠+∠+∠ Δ ∠BAC + ∠BCA + ∠ABC = 180°. Составим и решим уравнение:
x + x + (x+57) = 180
2x + x + 57 = 180
3x = 180 - 57
3x = 123
x = 41° - ∠BAC
∠ABC = x + 57 при x = 41.
Если x = 41, то x + 57 = 41 + 57 = 98° - ∠ABC
2. ∠ABC < ∠BAC
1) см. 1) в 1.
2) Пусть x - ∠ABC, тогда (x+57) - ∠BAC и (x+57) - ∠BCA. -//-:
x + 2(x+57) = 180
x + 2x + 114 = 180
3x = 180 - 114
3x = 66
x = 22° - ∠ABC
∠BAC = x + 57 при x = 22.
Если x = 22, то x + 57 = 22 + 57 = 79° - ∠ABC