4.Центральний кут дорівнює подвоєному вписаному куту, що спирається на ту ж дугу. Наслідки: Вписані кути, що спираються на одну дугу, рівні. Кут, що спирається на діаметр, — прямий. 5. Кожна дуга кола, як і все коло, має градусну міру. Градусну міру всього кола вважають рівною 360. Якщо центральний кут MON спирається на дугу MN : то градусну міру дуги MN вважають рівною градусній мірі кута MON і записують (читають: «градусна міра дуги MN дорівнює градусній мірі кута MON»). 6. Градусна міра центрального кута дорівнює градусній мірі дуги,на яку він спирається. Градусна міра всього кола дорівнює 3600. Градусна міра дуги кола(центрального кута) не залежить від радіуса кола.
Так как окружность вписана в треугольник, то стороны треугольника являются касательными к окружности. Радиус, проведённый в точку касания, перпендикулярен касательной в этой точке.
ON⊥CB, OK⊥AC, OM⊥AB
⇒ CKON - квадрат со стороной, равной радиусу вписанной окружности
⇒ r = CK = KO = JN = CN = 1 см
Отрезки касательных к окружности, проведённые из одной точки, равны
BM = BN = 2 см; AK = AM = x см
ΔABC :
BC = CN + BN = 1 см + 2 см = 3 см
AC = AK + KC = (x + 1) см
AB = AM + MB = (x + 2) см
Площадь прямоугольного треугольника можно вычислить через полупроизведение катетов или через произведение полупериметра на радиус вписанной окружности.
AC = x + 1 = 4 см; AB = x + 2 = 5 см
см²
Радиус описанной около прямоугольного треугольника окружности равен половине гипотенузы
5. Кожна дуга кола, як і все коло, має градусну міру. Градусну міру всього кола вважають рівною 360. Якщо центральний кут MON спирається на дугу MN : то градусну міру дуги MN вважають рівною градусній мірі кута MON і записують (читають: «градусна міра дуги MN дорівнює градусній мірі кута MON»).
6. Градусна міра центрального кута дорівнює градусній мірі дуги,на яку він спирається. Градусна міра всього кола дорівнює 3600. Градусна міра дуги кола(центрального кута) не залежить від радіуса кола.
Дано : ΔABC, ∠C = 90°, CN = 1 см, NB = 2 см,
вписанная окружность (O; r)
Найти : S, r, R
Так как окружность вписана в треугольник, то стороны треугольника являются касательными к окружности. Радиус, проведённый в точку касания, перпендикулярен касательной в этой точке.
ON⊥CB, OK⊥AC, OM⊥AB
⇒ CKON - квадрат со стороной, равной радиусу вписанной окружности
⇒ r = CK = KO = JN = CN = 1 см
Отрезки касательных к окружности, проведённые из одной точки, равны
BM = BN = 2 см; AK = AM = x см
ΔABC :
BC = CN + BN = 1 см + 2 см = 3 см
AC = AK + KC = (x + 1) см
AB = AM + MB = (x + 2) см
Площадь прямоугольного треугольника можно вычислить через полупроизведение катетов или через произведение полупериметра на радиус вписанной окружности.
AC = x + 1 = 4 см; AB = x + 2 = 5 см
см²
Радиус описанной около прямоугольного треугольника окружности равен половине гипотенузы
см
ответ : S = 6 см², r = 1 см, R = 2,5 см