Один из внутренних односторонних углов, образованный в результате пересечения двух параллельных прямых секущей, на 50° больше чем второй. Найдите наименьший из соответствующих углов, которые при этом образовались.
1.1. Строим равнобедренный прямоугольный треугольник с катетами =a
обозначим гипотенузу с
По теореме Пифагора c²=a²+a²=2a²
1.2 Строим равнобедренный прямоугольный треугольник с катетами =с
обозначим гипотенузу с₁
По теореме Пифагора c₁²=с²+с²=2a²+2a²=4a²
2) аналогично пункту 1) строим отрезок квадрат которого =4b²
2.1. Строим равнобедренный прямоугольный треугольник с катетами =b
обозначим гипотенузу с₂
По теореме Пифагора c₂²=b²+b²=b²
2.2 Строим равнобедренный прямоугольный треугольник с катетами =с
обозначим гипотенузу с₃
По теореме Пифагора c₃²=с₂²+с₂²=2b²+2b²=4b²
3) построение отрезка квадрат которого = 5ab
Строим окружность диаметром a+5b
на диаметре откладываем отрезки a и 5b
обозначим точку которая делит диаметр на отрезки а и 5b D
через точку D проводим перпендикуляр до пересечения с оркужностью в точке С получаем прямоугольный треугольник в котором отрезок CD - высота обозначим ее как h
так как высота является средникм геометрическим проекций катетов то h=√(5ab) и h²=5ab
4) строим прямоугольный треугольник с катетами с₁ и с₃
обозначим его гипотенузу с₄
по теореме Пифагора с₄²=с₁²+с₃²=4a²+4b²
5) строим прямоугольный треугольник с катетами с₄ и h
обозначим его гипотенузу с₅
по теореме Пифагора с₅²=с₄²+h²=4a²+4b²+5ab=4a²+5ab+4b²
Тебе дано то что треугольник прямоугольный то есть один угол равен 90 градусов, другой угол равен 60 градусов. Следовательно, третий угол равен 180 - 90 -60 = 30 градусов. Есть такая теорема что в прямоугольном треугольнике катет лежащий против угла в 30 градусов равен половине гипотенузы. Известно , что в любом треугольнике против большого угла лежит большая сторона. Следовательно катет лежащий против угла в 30 градусов меньший и он равен половине гипотенузы. Обозначим длину гипотенузы за х, тогда меньший катет = 1/2х Составим уравнение: 1/2х + х = 42 3/2х = 42 т.е 1,5х=42; х = 42/1,5 х= 28 см
Объяснение:
1) построение отрезка квадрат которого =4a²
1.1. Строим равнобедренный прямоугольный треугольник с катетами =a
обозначим гипотенузу с
По теореме Пифагора c²=a²+a²=2a²
1.2 Строим равнобедренный прямоугольный треугольник с катетами =с
обозначим гипотенузу с₁
По теореме Пифагора c₁²=с²+с²=2a²+2a²=4a²
2) аналогично пункту 1) строим отрезок квадрат которого =4b²
2.1. Строим равнобедренный прямоугольный треугольник с катетами =b
обозначим гипотенузу с₂
По теореме Пифагора c₂²=b²+b²=b²
2.2 Строим равнобедренный прямоугольный треугольник с катетами =с
обозначим гипотенузу с₃
По теореме Пифагора c₃²=с₂²+с₂²=2b²+2b²=4b²
3) построение отрезка квадрат которого = 5ab
Строим окружность диаметром a+5b
на диаметре откладываем отрезки a и 5b
обозначим точку которая делит диаметр на отрезки а и 5b D
через точку D проводим перпендикуляр до пересечения с оркужностью в точке С получаем прямоугольный треугольник в котором отрезок CD - высота обозначим ее как h
так как высота является средникм геометрическим проекций катетов то h=√(5ab) и h²=5ab
4) строим прямоугольный треугольник с катетами с₁ и с₃
обозначим его гипотенузу с₄
по теореме Пифагора с₄²=с₁²+с₃²=4a²+4b²
5) строим прямоугольный треугольник с катетами с₄ и h
обозначим его гипотенузу с₅
по теореме Пифагора с₅²=с₄²+h²=4a²+4b²+5ab=4a²+5ab+4b²
c₅= √(4a²+5ab+4b²)
Есть такая теорема что в прямоугольном треугольнике катет лежащий против угла в 30 градусов равен половине гипотенузы.
Известно , что в любом треугольнике против большого угла лежит большая сторона. Следовательно катет лежащий против угла в 30 градусов меньший и он равен половине гипотенузы.
Обозначим длину гипотенузы за х, тогда меньший катет = 1/2х
Составим уравнение:
1/2х + х = 42
3/2х = 42 т.е 1,5х=42;
х = 42/1,5
х= 28 см
ответ: 28 см.