Площадь круга, как Вы помните, находят по формуле S=πr² Радиус находим из остроугольных треугольников, образовавшимися диагоналями при меньшей стороне прямоугольника.
Эти треугольники - равносторонние, т.к. угол при пересечении диагоналей равен 60°, а сами диагонали делятся пополам и этим образуют равнобедренные треугольники, углы которых при основании, равном меньшей стороне вписанного прямоугольника, тоже равны 60°.⇒cледовательно, каждая половина диагонали равна меньшей стороне прямоугольника. А так как диагонали здесь являются диаметрами окружности, то радиус описанного круга тоже равен меньшей стороне прямоугольника. r=10 см
Если гипотенуза и острый угол одного треугольника соответственно равны гипотенузе и острому углу другого треугольника, то такие прямоугольные треугольники равны. чтобы доказать эту теорему, построим два прямоугольных гольника abc и а'в'с', у которых углы а и а' равны, гипотенузы ав и а'в' также равны, а углы с и с' — прямые наложим треугольник а'в'с' на треугольник abc так, чтобы вершина а' совпала с вершиной а, гипотенуза а'в' — с равной гипотенузой ав. тогда вследствие равенства углов a и а' катет а'с' пойдёт по катету ас; катет в'с' совместится с катетом вс: оба они перпендикуляры, проведённые к одной прямой ас из одной точки в (§ 26,следствие 3). значит, вершины с и с' совместятся. треугольник abc совместился с треугольником а'в'с'. следовательно, /\ авс = /\ а'в'с'.эта теорема даёт 3-й признак равенства прямоугольных треугольников (по гипотенузе и острому углу).
Площадь круга, как Вы помните, находят по формуле
S=πr²
Радиус находим из остроугольных треугольников, образовавшимися диагоналями при меньшей стороне прямоугольника.
Эти треугольники - равносторонние, т.к. угол при пересечении диагоналей равен 60°, а сами диагонали делятся пополам и этим образуют равнобедренные треугольники, углы которых при основании, равном меньшей стороне вписанного прямоугольника, тоже равны 60°.⇒cледовательно, каждая половина диагонали равна меньшей стороне прямоугольника. А так как диагонали здесь являются диаметрами окружности, то радиус описанного круга тоже равен меньшей стороне прямоугольника.
r=10 см
S=πr²,
S=100 π см²