Рассмотрим параллелограмм АВСД (см. рисунок) стороны которого: АВ=32 см, ВС=40 см. Из угла АВС проведем перпендикуляр ВЕ и расстояние между вершинам тупых углов ВД Рассмотрим треугольник АВЕ: Угол АЕВ=90 градусов, Гипотенуза АВ=32 см, Катет АЕ=16 см (по условию задачи) По теореме Пифагора найдем второй катет (высоту): ВЕ= √(АВ^2-АЕ^2)= √(32^2-16^2)= √(1024-256)= √768 см. Теперь рассмотрим треугольник BДE: ДЕ=АД-АЕ=40-16=24 см. ВЕ=√768 см. Угол ВЕД=90 градусов По теореме Пифагора найдем ВД: ВД=√(ВЕ^2+ВД^2)= √((√768)^2+24^2))= √(768+576)= √1344=8√21 см или приблизительно 36,66 см. ответ: расстояние между вершинами тупых углов равно 8√21 см
Чтобы с линейки и циркуля построить его середину М, нужно:
1) Из А и С как из центров циркулем провести равные окружности радиусом несколько больше половины этого отрезка,( на глаз это определить несложно), чтобы они могли пересечься.
2) Окружности пересекутся по обе стороны от АС. в точках В и Д ( можно обозначить иначе).
Соединить точки пересечения окружностей.
3) ВД пересечет АС в т.М, которая и является серединой данного отрезка АС.
------
Доказательство.
АВ=ВС=СД=ДА=ВК – радиусы равных окружностей =>
АВСД - ромб, АС и ВД его диагонали. Диагонали ромба пересекаются под прямым углом и в точке пересечения делятся пополам. =>АМ=МС,
Рассмотрим треугольник АВЕ:
Угол АЕВ=90 градусов, Гипотенуза АВ=32 см, Катет АЕ=16 см (по условию задачи)
По теореме Пифагора найдем второй катет (высоту):
ВЕ= √(АВ^2-АЕ^2)= √(32^2-16^2)= √(1024-256)= √768 см.
Теперь рассмотрим треугольник BДE:
ДЕ=АД-АЕ=40-16=24 см. ВЕ=√768 см. Угол ВЕД=90 градусов
По теореме Пифагора найдем ВД:
ВД=√(ВЕ^2+ВД^2)= √((√768)^2+24^2))= √(768+576)= √1344=8√21 см или приблизительно 36,66 см.
ответ: расстояние между вершинами тупых углов равно 8√21 см
ответПусть дан отрезок АС.
Чтобы с линейки и циркуля построить его середину М, нужно:
1) Из А и С как из центров циркулем провести равные окружности радиусом несколько больше половины этого отрезка,( на глаз это определить несложно), чтобы они могли пересечься.
2) Окружности пересекутся по обе стороны от АС. в точках В и Д ( можно обозначить иначе).
Соединить точки пересечения окружностей.
3) ВД пересечет АС в т.М, которая и является серединой данного отрезка АС.
------
Доказательство.
АВ=ВС=СД=ДА=ВК – радиусы равных окружностей =>
АВСД - ромб, АС и ВД его диагонали. Диагонали ромба пересекаются под прямым углом и в точке пересечения делятся пополам. =>АМ=МС,
Середина М отрезка АС построена.