Обозначь длину прямоугольника буквой х, тогда ширина его будет х-2. В твоем условии не понятно, длину какой стороны надо увеличить на 4 см, только длины, только ширины или и той, и той? Прочитай внимательно условие! Допустим, именно длину, тогда площадь увеличенного прямоугольника можно записать уравнением: (х+4)*(х-2)= 48, раскрываем скобки и получаем квадратное уравнение: х2+4х-2х-8 = 48, х2+2х-52 = 0 (х2 - это х в квадрате). решив его , найдешь длину х, ширина, соответственно, на 2 см меньше. Если увеличены на 4 см обе стороны, то уравнение: (х+4)*(х-2+4) = 48, (х+4)*(х+2) = 48; х2+4х+2х+8 = 48; х2+6х-40 = 0, в этом случае, D = 9 +40=49 (т.к. уравнение приведенное, а b -четное), х = 10см - это длина, ширина - 8см
ерез три точки, не лежащие на одной прямой, можно провести плосксть, притом только одну. Отсюда следует, что, так как вершина В треугольника не лежит в плоскости α, то плоскость треугольника не лежит в плоскости α, и его средняяо линия не лежит в той плоскости.
Пусть М делит пополам сторону АВ, а N- делит пополам сторону ВС
Отрезок MN-, соединяющий середины сторон треугольника, является его средней линией.
Средняя линия треугольника, соединяющая середины двух его сторон, параллельна третьей стороне и равна ее половине. (свойство средней линии)
По теореме о параллельности прямой и плоскости:
Если прямая, не лежащая в данной плоскости, параллельна какой-нибудь прямой, лежащей в этой плоскости, то она параллельна самой плоскости.
MN не лежит в плоскости α и параллельна АС, лежащей в плоскости α. Значит, MN || α, что и требовалось доказать.
(х2 - это х в квадрате). решив его , найдешь длину х, ширина, соответственно, на 2 см меньше. Если увеличены на 4 см обе стороны, то уравнение: (х+4)*(х-2+4) = 48, (х+4)*(х+2) = 48; х2+4х+2х+8 = 48;
х2+6х-40 = 0, в этом случае, D = 9 +40=49 (т.к. уравнение приведенное, а b -четное), х = 10см - это длина, ширина - 8см
ерез три точки, не лежащие на одной прямой, можно провести плосксть, притом только одну. Отсюда следует, что, так как вершина В треугольника не лежит в плоскости α, то плоскость треугольника не лежит в плоскости α, и его средняяо линия не лежит в той плоскости.
Пусть М делит пополам сторону АВ, а N- делит пополам сторону ВС
Отрезок MN-, соединяющий середины сторон треугольника, является его средней линией.
Средняя линия треугольника, соединяющая середины двух его сторон, параллельна третьей стороне и равна ее половине. (свойство средней линии)
По теореме о параллельности прямой и плоскости:
Если прямая, не лежащая в данной плоскости, параллельна какой-нибудь прямой, лежащей в этой плоскости, то она параллельна самой плоскости.
MN не лежит в плоскости α и параллельна АС, лежащей в плоскости α. Значит, MN || α, что и требовалось доказать.
Объяснение: